OPL – Optimisation problem library

Submit problems and corrections on GitHub with pull requests / issues, or by email: koen.van.der.blom@cwi.nl

name textual description suite/generator/single objectives dimensionality variable type constraints dynamic noise multi-fidelity source (real-world/artificial) reference implementation
BBOB suite 1 scalable continuous no no no no https://doi.org/10.1080/10556788.2020.1808977 https://github.com/numbbo/coco
BBOB-biobj suite 2 2-40 continuous no no no no https://doi.org/10.48550/arXiv.1604.00359 https://github.com/numbbo/coco
BBOB-noisy suite 1 scalable continuous no no yes no https://hal.inria.fr/inria-00369466 https://web.archive.org/web/20210416065610/https://coco.gforge.inria.fr/doku.php?id=downloads
BBOB-largescale suite 1 20-640 continuous no no no no https://doi.org/10.48550/arXiv.1903.06396 https://github.com/numbbo/coco
BBOB-mixint suite 1 5-160 integer;continuous;mixed no no no no https://doi.org/10.1145/3321707.3321868 https://github.com/numbbo/coco
BBOB-biobj-mixint suite 2 5-160 integer;continuous;mixed no no no no https://doi.org/10.1145/3321707.3321868 https://github.com/numbbo/coco
BBOB-constrained suite 1 2-40 continuous yes no no no http://numbbo.github.io/coco-doc/bbob-constrained/ https://github.com/numbbo/coco
MOrepo suite 2 ? combinatorial ? ? ? no https://github.com/MCDMSociety/MOrepo
ZDT suite 2 scalable continuous;binary no no no no https://doi.org/10.1162/106365600568202 https://github.com/anyoptimization/pymoo
DTLZ suite 2+ scalable continuous no no no no https://doi.org/10.1109/CEC.2002.1007032 https://pymoo.org/problems/many/dtlz.html
WFG suite 2+ scalable continuous no no no no https://doi.org/10.1109/TEVC.2005.861417 https://pymoo.org/problems/many/wfg.html
CDMP suite 2+ scalable continuous yes ? ? no https://doi.org/10.1145/3321707.3321878 ?
SDP suite 2+ scalable continuous no yes ? no https://doi.org/10.1109/TCYB.2019.2896021 ?
MaOP suite 2+ scalable continuous no no ? no https://doi.org/10.1016/j.swevo.2019.02.003 ?
BP suite 2+ scalable continuous no no ? no https://doi.org/10.1109/CEC.2019.8790277 ?
GPD generator 2+ scalable continuous optional no optional no https://doi.org/10.1016/j.asoc.2020.106139 ?
ETMOF suite 2-50 25-10000 continuous no yes no no https://doi.org/10.48550/arXiv.2110.08033 https://github.com/songbai-liu/etmo
MMOPP suite 2-7 ? ? yes no no no http://www5.zzu.edu.cn/system/_content/download.jsp?urltype=news.DownloadAttachUrl&owner=1327567121&wbfileid=4764412 http://www5.zzu.edu.cn/ecilab/info/1036/1251.htm
CFD expensive evaluations 30s-15m suite 1-2 scalable ? yes no no no real world https://doi.org/10.1007/978-3-319-99259-4_24 https://bitbucket.org/arahat/cfd-test-problem-suite
GBEA expensive evaluations 5s-35s suite 1-2 scalable continuous no no yes no real world https://doi.org/10.1145/3321707.3321805 ?
Car structure 54 constraints suite 2 144-222 discrete yes no no no real world https://doi.org/10.1145/3205651.3205702 http://ladse.eng.isas.jaxa.jp/benchmark/
EMO2017 suite 2 4-24 continuous no no no no real world https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/ https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/downloads/realworld-problems-bbcomp-EMO-2017.zip
JSEC2019 expensive evaluations 3s; 22 constraints single 1-5 32 continuous yes no no no real world http://www.jpnsec.org/files/competition2019/EC-Symposium-2019-Competition-English.html http://www.jpnsec.org/files/competition2019/EC-Symposium-2019-Competition-English.html
RE suite 2-9 2-7 continuous;integer;mixed no no no no real world like https://doi.org/10.1016/j.asoc.2020.106078 https://github.com/ryojitanabe/reproblems
CRE suite 2-5 3-7 continuous;integer;mixed yes no no no real world like https://doi.org/10.1016/j.asoc.2020.106078 https://github.com/ryojitanabe/reproblems
Radar waveform single 9 4-12 integer yes no no no real world https://doi.org/10.1007/978-3-540-70928-2_53 http://code.evanhughes.org/
MF2 suite 1 1-n continuous no no no yes https://doi.org/10.21105/joss.02049 https://github.com/sjvrijn/mf2
AMVOP suite 1 scalable mixed continuous+ordinal+categorical+both no no no no https://doi.org/10.1109/TEVC.2013.2281531 ?
RWMVOP suite 1 scalable continuous;mixed continuous+ordinal+categorical+both yes no no no real world https://doi.org/10.1109/TEVC.2013.2281531 ?
SBOX-COST problems from BBOB but allows instances with the optimum close to the boundary suite 1 scalable continuous no no no no https://doi.org/10.48550/arXiv.2305.12221 https://github.com/IOHprofiler/IOHexperimenter/
ρMNK-Landscapes tunable variable and objective dimensions; tunable multimodality and correlation between objectives generator scalable scalable binary no no no no https://doi.org/10.1016/j.ejor.2012.12.019 https://gitlab.com/aliefooghe/mocobench/
mUBQP tunable variable and objective dimensions; tunable density and correlation between objectives generator scalable scalable binary no no no no https://doi.org/10.1016/j.asoc.2013.11.008 https://gitlab.com/aliefooghe/mocobench/
ρmTSP tunable variable and objective dimensions; tunable instance type (euclidian/random); tunable correlation between objectives generator scalable scalable permutations no (apart from being permutations) no no no https://doi.org/10.1007/978-3-319-45823-6_40 https://gitlab.com/aliefooghe/mocobench/
CEC2015-DMOO suite 2-3 ? continuous ? yes no no Benchmark Functions for CEC 2015 Special Session and Competition on Dynamic Multi-objective Optimization
Ealain Real-world-like, easily extensible to increase complexity generator 1+ scalable continuous,binary,integer optional optional no optional Real-world-like https://doi.org/10.1145/3638530.3654299 https://github.com/qrenau/Ealain
MA-BBOB Generator that creates affine combinations of BBOB functions generator 1 scalable continuous no no no no artificial https://doi.org/10.1145/3673908 https://github.com/IOHprofiler/IOHexperimenter/blob/master/example/Competitions/MA-BBOB/Example_MABBOB.ipynb
MPM2 nonlinear nonseparable nonsymmetric; scalable in terms of time to evaluate the objective function generator 1 scalable continuous no no no no https://ls11-www.cs.tu-dortmund.de/_media/techreports/tr15-01.pdf https://github.com/jakobbossek/smoof/blob/master/inst/mpm2.py
Convex DTLZ2 Variant of DTLZ2 with a convex Pareto front (instead of concave) single 2+ scalable continuous no no no no https://doi.org/10.1109/TEVC.2013.2281535 ?
Inverted DTLZ1 Variant of DTLZ1 with an inverted Pareto front single 2+ scalable continuous no no no no https://doi.org/10.1109/TEVC.2013.2281534 ?
Minus DTLZ Variant of DTLZ that minimises the inverse of the base DTLZ functions suite 2+ scalable continuous no no no no https://doi.org/10.1109/TEVC.2016.2587749 ?
Minus WFG Variant of WFG that minimises the inverse of the base WFG functions suite 2+ scalable continuous no no no no https://doi.org/10.1109/TEVC.2016.2587749 ?
L1-ZDT Variant of ZDT with linkages between variables within one of two groups but not between variables in a different group; Linear recombination operators can potentially take advantage of the problem structure suite 2 scalable continuous;binary no no no no https://doi.org/10.1145/1143997.1144179 ?
L2-ZDT Variant of ZDT with linkages between all variables; Linear recombination operators can potentially take advantage of the problem structure suite 2 scalable continuous;binary no no no no https://doi.org/10.1145/1143997.1144179 ?
L3-ZDT Variant of L2-ZDT using a mapping to prevent linear recombination operators from potentially taking advantage of the problem structure suite 2 scalable continuous;binary no no no no https://doi.org/10.1145/1143997.1144179 ?
L2-DTLZ Variant of DTLZ2 and DTLZ3 with linkages between all variables; Linear recombination operators can potentially take advantage of the problem structure suite 2+ scalable continuous no no no no https://doi.org/10.1145/1143997.1144179 ?
L3-DTLZ Variant of L2-DTLZ using a mapping to prevent linear recombination operators from potentially taking advantage of the problem structure suite 2+ scalable continuous no no no no https://doi.org/10.1145/1143997.1144179 ?
CEC2018 DT - CEC2018 Competition on Dynamic Multiobjective Optimisation 14 problems. Time-dependent: Pareto front/Pareto set geometry; irregular Pareto front shapes; variable-linkage; number of disconnected Pareto front segments; etc. suite 2 or 3 scalable? ? no yes no no artificial https://www.academia.edu/download/94499025/TR-CEC2018-DMOP-Competition.pdf https://pymoo.org/problems/dynamic/df.html
MODAct - multiobjective design of actuators Realistic Constrained Multi-Objective Optimization Benchmark Problems from Design. Need the https://github.com/epfl-lamd/modact package installed; evaluation times around 20ms suite 2 3 4 or 5 20 mixed; integer and continuous yes no no no real-world https://doi.org/10.1109/TEVC.2020.3020046 https://pymoo.org/problems/constrained/modact.html
IOHClustering Set of benchmark problems from clustering: optimization task is selecting cluster centers for a given set of data, with the number of clusters defining problem dimensionality. Includes both a suite and a generator. Based on ML clustering datasets suite; generator 1 scalable continuous no no no no artificial, but based on real data https://arxiv.org/pdf/2505.09233 https://github.com/IOHprofiler/IOHClustering
GNBG-II Generalized Numerical Benchmark Generator (version 2). Also in IOH https://github.com/IOHprofiler/IOHGNBG suite; generator 1 scalable continuous no no no no artificial https://dl.acm.org/doi/pdf/10.1145/3712255.3734271 https://github.com/rohitsalgotra/GNBG-II
GNBG Generalized Numerical Benchmark Generator suite; generator 1 scalable continuous no no no no artificial https://arxiv.org/abs/2312.07083 https://github.com/Danial-Yazdani/GNBG-Generator
DynamicBinVal Four versions of the dynamic binary value problem suite 1 scalable binary no yes no no artificial https://arxiv.org/pdf/2404.15837 https://github.com/IOHprofiler/IOHexperimenter
PBO Suite of 25 binary optimization problems suite 1 scalable binary no no no no artificial https://dl.acm.org/doi/pdf/10.1145/3319619.3326810 https://github.com/IOHprofiler/IOHexperimenter
W-model Tunable generator for binary optimization based on several difficulty features generator 1 scalable binary no no no no artificial https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw https://github.com/thomasWeise/BBDOB_W_Model
Submodular Optimitzation set of graph-based submodular optimization problems from 4 problem types suite 1 scalable binary no no no no artificial https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10254181 https://github.com/IOHprofiler/IOHexperimenter
CEC2013 suite used for cec2013 competition. Also in IOH https://github.com/IOHprofiler/IOHexperimenter suite 1 scalable continuous no no no no artificial https://peerj.com/articles/cs-2671/CEC2013.pdf https://github.com/P-N-Suganthan/CEC2013
CEC2022 suite used for cec2022 competition. Also in IOH https://github.com/IOHprofiler/IOHexperimenter suite 1 scalable continuous no no no no artificial https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf https://github.com/P-N-Suganthan/2022-SO-BO
Onemax+Sphere / Zeromax+Sphere single 2 scalable binary and continuous;mixed; no no no no artificial https://doi.org/10.1145/3449726.3459521 None
Onemax+Sphere / DeceptiveTrap+RotatedEllipsoid single 2 scalable binary and continuous;mixed; no no no no artificial https://doi.org/10.1145/3449726.3459521 None
InverseDeceptiveTrap+RotatedEllipsoid / DeceptiveTrap+RotatedEllipsoid single 2 scalable binary and continuous;mixed; no no no no artificial https://doi.org/10.1145/3449726.3459521 None
name textual description suite/generator/single objectives dimensionality variable type constraints dynamic noise multi-fidelity source (real-world/artificial) reference implementation