
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022 1351

Sparkle: Toward Accessible Meta-Algorithmics
for Improving the State of the Art
in Solving Challenging Problems

Koen van der Blom , Holger H. Hoos, Chuan Luo , and Jeroen G. Rook

Abstract—Many fields of computational science advance
through improvements in the algorithms used for solving key
problems. These advancements are often facilitated by bench-
marks and competitions that enable performance comparisons
and rankings of solvers. Simultaneously, meta-algorithmic tech-
niques, such as automated algorithm selection and configuration,
enable performance improvements by utilizing the complemen-
tary strengths of different algorithms or configurable algorithm
components. In fact, meta-algorithms have become major drivers
in advancing the state of the art in solving many prominent
computational problems. However, meta-algorithmic techniques
are complex and difficult to use correctly, while their incorrect
use may reduce their efficiency, or in extreme cases, even lead
to performance losses. Here, we introduce the Sparkle platform,
which aims to make meta-algorithmic techniques more accessible
to nonexpert users, and to make these techniques more broadly
available in the context of competitions, to further enable the
assessment and advancement of the true state of the art in solv-
ing challenging computational problems. To achieve this, Sparkle
implements standard protocols for algorithm selection and con-
figuration that support easy and correct use of these techniques.
Following an experiment, Sparkle generates a report contain-
ing results, problem instances, algorithms, and other relevant
information, for convenient use in scientific publications.

Index Terms—Algorithm configuration, algorithm selection,
benchmarking, competitions, meta-algorithms, software tools.

Manuscript received 15 September 2021; revised 27 January 2022,
20 May 2022, and 29 September 2022; accepted 4 October 2022. Date of
publication 17 October 2022; date of current version 1 December 2022. This
work was supported in part by TAILOR, a project funded by EU Horizon
2020 Research and Innovation Programme under Grant 952215, and in part
by the National Natural Science Foundation of China under Grant 62202025.
(Corresponding author: Koen van der Blom.)

Koen van der Blom was with the Faculty of Science, Leiden University,
2311 EZ Leiden, The Netherlands. He is now with LIP6, CNRS, Sorbonne
Université, 75005 Paris, France (e-mail: koen.vdblom@lip6.fr).

Holger H. Hoos is with the Faculty of Science, Leiden University, 2311
EZ Leiden, The Netherlands, also with the Department of Computer Science,
RWTH Aachen University, 52062 Aachen, Germany, and also with the
Department of Computer Science, University of British Columbia, Vancouver,
BC V6T 1Z4, Canada (e-mail: hh@aim.rwth-aachen.de).

Chuan Luo was with the Faculty of Science, Leiden University, 2311
EZ Leiden, The Netherlands. He is now with the School of Software, Beihang
University, Beijing 100190, China (e-mail: chuanluo@buaa.edu.cn).

Jeroen G. Rook was with the Faculty of Science, Leiden University,
2311 EZ Leiden, The Netherlands. He is now with the Data Management
and Biometrics (DMB), University of Twente, 7522 NB Enschede, The
Netherlands (e-mail: j.g.rook@utwente.nl).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TEVC.2022.3215013, provided by the authors.

Digital Object Identifier 10.1109/TEVC.2022.3215013

I. INTRODUCTION

OVER the past decade, our ability to solve well-studied
computationally challenging problems has increased

substantially, as has the importance of high-performance
solvers for these problems in the context of real-world appli-
cations. This can be seen, for example, in the case of
the propositional satisfiability problem (SAT), one of the
most prominent NP-complete combinatorial decision prob-
lems, which has important real-world applications in hard- and
software verification (e.g., [1]).

Part of these advances have been incentivized by bench-
marks and competitions, and the desire to outperform other
solvers. Meanwhile, meta-algorithmic techniques, such as
automated algorithm configuration (AAC) and automated algo-
rithm selection (AAS), are also being used increasingly to
advance the state of the art in solving a broad range of
problems from AI and related areas. By carefully choosing
parameter settings and algorithm components, AAC tech-
niques are often able to achieve substantial performance
gains. This has been shown, e.g., for SAT [2], [3], Max-
SAT [4], the machine reassignment problem [5], mixed-integer
programming (MIP) [2], [6], automated planning [7], and
supervised machine learning [8], [9]. AAS techniques lever-
age the fact that different solvers perform best for different
problem instances, and achieve better performance than stand-
alone solvers by selecting from a given portfolio of solvers
one (or more) solvers that are most suitable for a given
instance [10]. AAS has seen successful application on a broad
range of widely studied problems, including SAT [11], Max-
SAT [12], MIP [13], [14], constraint programming (CP) [15],
and AI planning [16].

Due to their substantial impact on performance, meta-
algorithmic techniques, such as AAS and AAC, have become
increasingly important for benchmarking and competitions.
In both settings, traditional ranking and comparison schemes
commonly represent the state of the art by relying on metrics
that aggregate algorithm performance over a set of problem
instances (e.g., average running time), and considering a single
predefined parametrization for each algorithm (e.g., by using
the default parameter settings). However, this typically fails to
capture the true performance potential. AAC allows solvers to
realize their performance potential by finding the best config-
uration for a specific set or distribution of problem instances.
When all solvers are able to reach their full potential, this

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-4653-0707
https://orcid.org/0000-0001-5028-1064
https://orcid.org/0000-0002-3921-0107

1352 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

results in a more accurate representation of the state of the
art. Similarly, as observed above in the context of AAS, the
best solver is usually not the same for each instance. The
true state of the art thus cannot be adequately represented
by a single solver, as considered in traditional benchmarks
and competitions, but requires the use of multiple solvers or
solving techniques. Therefore, to more accurately assess the
true state of the art, meta-algorithmic techniques, such as AAS
and AAC have to be utilized. These observations have led to
new types of competitions that integrate meta-algorithms, such
as the configurable SAT solver challenge (CSSC) [3], and the
per-instance selection-based Sparkle Challenges for SAT1 and
AI planning.2

However, automatically improving performance by means
of meta-algorithmic techniques poses substantial additional
challenges. Meta-algorithms are internally complex, and their
implementations are usually not easy to use. In addition, there
are several well-documented pitfalls that can easily lead to
unsatisfactory results. For example, in AAC [17], letting each
algorithm that is being configured measure their own run-
ning time can lead to unreliable results, because they may
all use different, inconsistent, implementations to measure
this. Furthermore, large-scale performance evaluations and the
effective use of meta-algorithmic techniques all require sub-
stantial computational resources, often benefiting from parallel
computation on high-performance compute (HPC) clusters,
which introduces additional complexity. Consequently, mis-
takes do not just lead to poor results, but can also be expensive
to rectify and cause additional environmental impact through
CO2 emissions.

Having defined the true state of the art in solving a given
problem, and established the need for meta-algorithms (such
as AAS and AAC) both to assess and advance it, we fur-
ther observe that their use in practice (scientific as well as
industry) is limited (e.g., in research, algorithms are primar-
ily optimized manually or with simple methods, such as grid
search [18]). Here, we introduce Sparkle,3 a platform that
has been designed to lower the threshold for using these
meta-algorithmic techniques effectively and correctly, avoid-
ing common pitfalls and following best practices. Naturally,
this should benefit the users of meta-algorithmic techniques,
who will have an easier time advancing and staying up to date
with the state of the art in solving challenging computational
problems. In addition, developers of meta-algorithms may ben-
efit from increased adoption of their methods when they are
made available through Sparkle. In turn, attention to improv-
ing meta-algorithmic techniques may also grow. In this work,
we give a detailed overview of the steps required for apply-
ing AAS and AAC, how these are implemented in Sparkle,
and which steps are made easier compared to using AAS and
AAC in a stand-alone fashion, supported by a small user study.
The initial version of Sparkle presented here incorporates one
prominent AAS and AAC system each (AutoFolio [19] and

1https://ada.liacs.nl/events/sparkle-sat-18/
2https://ada.liacs.nl/events/sparkle-planning-19/
3Sparkle is publicly available at: https://bitbucket.org/sparkle-ai/sparkle/

SMAC [20], respectively). These were chosen carefully to
ensure high-quality and broadly usable systems.

In the following, we first discuss how Sparkle is situated in
relation to other work (Section II). Then, in Section III, we
cover the core design principles behind Sparkle. Section IV
introduces the first major use case, where AAS is employed
with parameter-less solvers to take advantage of their com-
plementary strengths, and to accurately assess the true state
of the art. Next, Section V considers parameterized solvers,
and how they can benefit from AAC in Sparkle in a relatively
hassle-free way. In Section VI, we briefly discuss how Sparkle
can be used to enable new types of competitions. Section VII
covers additional use cases enabled by the Sparkle platform. In
Section VIII, we discuss best practices and pitfalls covered by
this implementation of Sparkle. Finally, in Section IX, we draw
several general conclusions and briefly outline future work.

II. RELATED WORK

In the following, we consider tools that, like Sparkle,
in some way support accessibility to, assessment of and/or
advancement of the state of the art in solving computationally
challenging problems. For each of these, we situate contri-
butions to these goals against those made by Sparkle and
highlight the gaps Sparkle can fill.

For single- and bi-objective evolutionary algorithms, the
COCO framework [21] provides a well-established bench-
marking environment, in which many standard tools required
for experimentation with and benchmarking of these types
of algorithms are readily available. In particular, COCO
includes statistical analysis tools and standardized experimen-
tation procedures, which help to avoid common mistakes
(e.g., benchmark function variation, through rotations, etc., to
avoid overfitting). Additionally, experimental results submitted
by users are collected, which makes comparison with other
algorithms easy. Support for meta-algorithmic procedures is
currently not included.

With ParadisEO [22], evolutionary computation (EC) algo-
rithms can be constructed from components. Through inte-
grations with the algorithm configurator irace [23] and the
experimentation platform IOHexperimenter [24], ParadisEO is
able to automatically construct EC algorithms and measure
their performance [25]. However, an integration like this only
makes the configuration procedure available to the specific
application and can therefore only be used in its specific con-
text. In this case, ParadisEO is focused on EC algorithms and
similar iterative optimization algorithms (as is the IOH frame-
work). With Sparkle, on the other hand, we aim to support the
use of AAC and other meta-algorithmic design procedures as
generally as possible (and it is already broadly usable, e.g.,
for SAT solvers, AI planners, and MIP solvers).

SPOT [26] is an R package for hyperparameter optimization
(HPO) and provides a number of related tools. Particularly, it
focuses on surrogate-model-based parameter optimization to
reduce computational cost. In addition to the core optimization
tools, SPOT also includes functionality to visually compare
parameters obtained as a result of the optimization process.
Whereas SPOT focuses on a special case of AAC, Sparkle

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1353

aims to make a broader range of meta-algorithmic techniques
accessible to its users.

Existing algorithm configuration procedures, such as
SMAC [20], irace [23], ParamILS [27], and GPS [28], are
readily available for use by experts in algorithm configura-
tion, but are often challenging to use for nonexperts. This
usability issue stems from their focus on the core configuration
process, which is sufficient for experts in algorithm configura-
tion, while only limited support is provided for the overall
configuration process that has to be considered in practice
(this is elaborated further in Section V, Fig. 2). For algo-
rithm selection, the situation is slightly better. Recognizing
that different types of algorithm selectors and settings work
best in different use cases, AutoFolio [19] automatically con-
figures an algorithm selector for a given application scenario,
using SMAC. Although this simplifies part of the process of
constructing a high-performance algorithm selector, AutoFolio
itself is not much more accessible to nonexperts than other
algorithm selection systems.

Meta-algorithmic benchmarking libraries, such as
AClib [29] and ASlib [30], provide scenarios for test-
ing and benchmarking meta-algorithmic techniques. While
ASlib limits itself purely to the scenarios to compare on,
AClib also includes affordances for running a number of
algorithm configurators on those scenarios. Finally, AClib
provides tools for producing some basic statistics and plots
for the configuration scenarios it has been used to run.
Whereas ASlib and AClib are designed for AAS and AAC
experts, respectively, Sparkle is designed to be accessible to
allow nonexperts to benefit from techniques, such as AAS
and AAC. In addition, Sparkle aims to better support users by
generating reports that provide more details about the process
that was used to obtain a given set of results.

For machine learning pipeline design, various AutoML
frameworks exist, such as Auto-sklearn [31] and
AutoGluon [32]. While these frameworks are limited to
machine learning, this is not the case for Sparkle, which
can in principle be applied to a much broader range of
computational problems. In addition, Sparkle can also be
used for simple performance evaluations and comparative
performance analysis, which are usually not included in
AutoML frameworks.

For machine learning problems, OpenML [33] collects
datasets, experiments, algorithms, and results. This enables
scientists to compare their approaches on the same datasets
and under the same conditions. In addition, OpenML pro-
vides a wealth of data from many different runs of each
algorithm on a range of datasets. While this is of great value
for benchmarking and accurate performance comparisons, it
markedly differs from Sparkle, which supports the broad use
of meta-algorithmic techniques.

HAL [34] aimed to support similar functionality to Sparkle,
with a particular focus on automated analysis and design of
algorithms, including meta-algorithms. Unfortunately, HAL
turned out to be over-engineered, in the sense that, while
accommodating a wide range of functions at its release, it
was difficult to install and use, resulting in limited adoption.
Sparkle aims to avoid these issues, by ensuring that simple

tasks are easy to carry out. To avoid an unnecessarily complex
design, it is focused around simple, modular command scripts
that are easy to use. Behind the scenes, these scripts may still
call more complex classes and structures, but those too are all
designed to have an easily understood interface that is called
by the command scripts. To aid installation, Sparkle aims to
automate the installation process to the largest extend possible,
e.g., by automatically installing dependencies. Furthermore,
unlike HAL, Sparkle automatically produces detailed reports.

III. DESIGN

One of the main design principles underlying Sparkle is
that it should be easy to get simple things done (e.g., adding
a solver), and as easy as possible to achieve more complex
goals (e.g., configuring an algorithm). Naturally, what is easy
to do also depends on the level of expertise of different users
with regard to the meta-algorithmic procedures made avail-
able through Sparkle. Here, we consider an expert user to
be someone that is familiar with the specific meta-algorithm
they want to use, and a nonexpert someone who is not. We
note that, for this initial implementation of Sparkle, we expect
nonexperts to be familiar with standard computer science con-
cepts, such as programming and command line interfaces
(CLIs). While Sparkle especially targets nonexperts, easier-
to-use meta-algorithms should also be of benefit to expert
users. These considerations resulted in a design that is primar-
ily based on a relatively small set of commands that are largely
self explanatory. By combining these commands, scripts can
be written to specify and run experiments. For expert users,
this should result in scripts that broadly follow the high-level
processes they are already familiar with, although with a much
reduced need to specify details, while nonexpert users will
benefit from the scaffolding and abstraction afforded by this
approach. For example, in algorithm selection, the instances,
solvers, and feature extractor(s) are added to the system, after
which the features and performance data are computed, and the
portfolio selector and the report are constructed. This shows
the usual process to construct a portfolio selector and makes
clear what needs to be provided by the user, without requiring
detailed instructions from the user on how to actually construct
the selector, or on how to evaluate it.

To achieve a system that is as easy and safe to use as pos-
sible, we broadly consider the following three categories of
usability throughout Sparkle.

1) Efficiency.
2) Correctness.
3) Understandability.
Efficiency primarily concerns how simple the process is for

users to achieve their goals with Sparkle. This includes the
commands they need to call (e.g., add_solver) and the
input they need to provide (e.g., problem instances). Each of
these interactions should be as easy and clear as possible. To
this end, the number of necessary interactions is minimized,
and also kept as simple as possible (e.g., the run_solvers
command does not require any arguments because, by default,
it simply runs all solver-instance combinations for which no

1354 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

performance data is available yet), while keeping options
available for flexibility and more sophisticated functionality.

Correctness focuses on the correct execution of all processes
initiated by the user. Here, the focus is on the internal oper-
ation of Sparkle. Since complex meta-algorithmic techniques
are provided to potentially nonexpert users, support is needed
in their correct use. To the largest extend possible, Sparkle
aims to make sure that correct experimental procedures are
followed (e.g., by correctly implementing the standard pro-
tocol for algorithm configuration from [35], also discussed
later in Section V), and that potential pitfalls are avoided (see
Section VIII). Since it is not always possible to guarantee
correct use, Sparkle aims to provide adequate warnings and
possible solutions when potential problems are detected that
cannot be prevented by design (e.g., crashes of the algorithm
that is being configured). As a result, at a minimum, the user
should be made aware of potential problems (e.g., by writing
warnings and errors to the command line) and should then be
able to take action or seek help from experts.

Understandability is concerned with explaining the out-
put and operation. The main vehicle for this is the reporting
functionality of Sparkle. For each meta-algorithmic process
(e.g., algorithm configuration), a report can be generated.
This report then describes the experimental setup (e.g., which
problem instances were used), the process that was fol-
lowed (e.g., how performance is assessed), and the results,
along with pertinent references to the literature. To show
how Sparkle helps compared to using AAS and AAC in a
stand-alone fashion, example reports for AAS and AAC are
included in the supplementary material, together with raw out-
put of AutoFolio and SMAC (the state-of-the-art AAS and
AAC systems currently integrated into Sparkle). Concretely,
compared to AutoFolio, the most significant additions of
the Sparkle report for AAS are: a detailed description of
the algorithm selection procedure and settings, performance
comparisons between individual solvers and the algorithm
selector, insight into individual contributions of component
solvers to the performance of the algorithm selector, and
plots for visual comparison. Similarly, compared to SMAC,
the main additions of the Sparkle report for AAC are: a
detailed description of the algorithm configuration procedure
and settings, plots for visual comparison, and a comparison
of the number of instances on which the target algorithm
timed out with default and configured parameters. Beyond
the reports, other ways to support understanding include anal-
ysis tools, for instance to assess parameter importance (see
Section VII-B).

IV. SPARKLE FOR PARAMETER-LESS SOLVERS

With the design principles from the previous section in
mind, we first consider Sparkle for the simplified case in
which the performance parameters (which only affect the
performance of a given solver) for all solvers are fixed at a
predetermined setting or no such parameters exist. Under these
conditions, AAC is not applicable, but performance comple-
mentarity between solvers can be exploited using AAS. The
per-instance algorithm selection problem arises in situations

Listing 1. Example of per-instance algorithm selection in Sparkle for SAT
solving.

where no single algorithm is the best for every problem
instance of interest, and thus performance can be improved
by selecting the best performing algorithm on a per-instance
basis [10]. AAS aims to tackle the per-instance algorithm
selection problem in an automated fashion [36], [37], [38].
The key idea is to construct a per-instance algorithm selec-
tor that predicts the most suitable algorithm for each given
problem instance, based on reasonably efficiently computable
features of that instance. Fig. 1 illustrates a typical process
followed in the construction of an algorithm selector and indi-
cates where the version of Sparkle described in the following
improves the ease of use compared to using a selector con-
struction tool without aid beyond the affordances commonly
made by selector construction tools.

At the conceptual level, the Sparkle platform for parameter-
less solvers then comprises the following core components.

1) A collection S of solvers.
2) A collection I of problem instances used for training.
3) A collection E of feature extractors to compute problem

instance features.
4) Feature data F computed using the feature extractors in

E for the instances in I.
5) Performance data (for now, only running times are

implemented, but the main principles are the same for
solution quality optimization) P for the solvers in S on
the instances in I.

6) A procedure C for constructing a portfolio-based selec-
tor R based on S, optimized for performance on I, using
feature data from F and performance data from P.

7) A procedure N for computing the contributions of any
solver s ∈ S to a given portfolio-based selector R on the
instances in I.

In addition, we need to provide the following support
components.

1) A mechanism for performing runs of solvers from S,
of feature extractors from E, of the portfolio-based
selector R, of the construction procedure C and of the
contribution analysis procedure N.

2) A user interface (UI) that makes it easy to add solvers to
S, to remove solvers from S, to submit an instance i to
be solved, and to access performance and contribution
data for solvers in S.

Above, in Listing 1, we show a concrete example of how
these components are realized and used in the form of concrete

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1355

Fig. 1. Typical algorithm selector construction process, with steps where Sparkle improves the ease of use compared to using a stand-alone selector
construction system shown in boldface. Solid lines connect related steps; dashed lines separate the phases: preparation, execution, and analysis.

Sparkle commands for constructing a per-instance algorithm
selector based on three SAT solvers.4

As seen in this example, in practice, constructing a per-
instance algorithm selector in Sparkle works as follows.

1) After a general initialization in line 1, a user seeds I with
a collection of problem instances5 suitable for training
selectors in line 2 (e.g., when dealing with SAT solvers,
these could be taken from past SAT competitions6 [39],
[40], [41], [42], [43], [44], [45], [46]), adds one or more
solvers to S (lines 3–5) and adds one or more feature
extractors to the collection E (line 6). The user then trig-
gers the computation (optionally with –parallel) of
the feature data F (line 7) and the performance data P
(line 8), by using a Sparkle command to run S and E
on all instances in I with a fixed cutoff time tmax (spec-
ified through a settings file). Finally, the user runs the
construction procedure C to obtain an initial portfolio-
based selector R (line 9). At any point following this, the
user can generate a report for the current portfolio-based
selector (line 10).

2) When a new instance i (or a set of problem
instances) is to be solved, it can be passed to the
run_sparkle_portfolio_selector.py com-
mand. Following this, its features are computed, using
the feature extractors in E; the resulting feature vector

4Some paths are shortened for legibility, e.g., initialise.py would
be Commands/initialise.py and PbO-CCSAT-Generic/ would be
path/to/PbO-CCSAT-Generic/. A complete runnable example is avail-
able at https://bitbucket.org/sparkle-ai/sparkle/src/main/Examples/selection.sh.

5Sparkle aims to be general in the types of problems it supports. To accom-
modate situations where problem instances are specified by multiple files (as
is usually the case in AI planning), an additional file can be included in the
instance directories added to Sparkle to indicate which combinations of files
jointly form a problem instance.

6http://www.satcompetition.org/

is then passed to the portfolio-based selector R, which
runs one or more solvers from S on the new instance i.
When multiple solvers are chosen by the selector, these
are executed according to a fixed schedule, based on the
output of the selector.

3) When a new solver s is added by the user, s is
added to S and run on all instances in I (this can be
streamlined by using the –run-solver-now option
with the add_instances.py command) with cut-
off time tmax; the resulting performance data are added
to P. We note that s is run once for each instance,
even for nondeterministic solvers. This approach has
been taken, in order to avoid the overhead of perform-
ing multiple runs per instance, and to match common
practices in current competitions. After this, C is run
to obtain a new portfolio-based selector R that may
utilize s.

4) Similarly, when a user removes a solver s, s is removed
from S and the performance data for s is removed from
P. Then, C is run to obtain a new portfolio-based selector
R that no longer uses s.

5) A report generated for a portfolio-based selector,7 con-
tains detailed information (including the collection of
instances I, solvers S, and feature extractors E, the pro-
cedures of constructing portfolio-based selectors, the
detailed experimental setup, etc.). Further, the gener-
ated report contains the comparison of the constructed
portfolio-based selector to both the single best solver
and virtual best solver (VBS).8

7An example report is included in the supplemental material.
8The VBS is the perfect selector and always reports the best solution out

of those reported by all candidate solvers [47]. Hence, the VBS can be con-
sidered as an oracle, and its performance represents the upper bound for the
performance of a portfolio-based selector.

1356 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

In this initial implementation of Sparkle, per-instance algo-
rithm selectors are constructed using the freely available,
state-of-the-art AutoFolio system [19], which uses an algo-
rithm configuration procedure to automatically construct high-
performance algorithm selectors. Evidently, other per-instance
algorithm selectors (e.g., [2], [5], [11], and [47]) and selector
construction methods (e.g., [48] and [49]), as well as algo-
rithm scheduling and parallel portfolio construction methods
(e.g., [50]) can in principle be used instead of AutoFolio
to exploit performance complementarity between parameter-
less solvers. The advantages of AutoFolio are that: 1) it is
a general-purpose method applicable to algorithms for arbi-
trary problems; 2) it incorporates a number of per-instance
algorithm selection techniques known from the literature; and
3) it automatically configures an algorithm selector based on
the resulting collection of algorithm selection procedures and
their hyperparameters, to maximize performance in a given
situation, as characterized by a given set of solvers, feature
extractors, and training instances. The current implementa-
tion using AutoFolio clearly demonstrates the potential of the
Sparkle system.

Performance can be assessed and optimized using various
metrics, such as the number of solved instances [51], as well
as PAR10, the penalized average running time with a penalty
factor 10, which averages running time over a given set of
instances, counting each timed-out run as ten times the given
cutoff time [27]. Currently, for algorithm selection, Sparkle is
restricted to the widely used PARk metric, where the penalty
factor k can be set by the user through a settings file.

In the current implementation of Sparkle, solver contribu-
tions (to the PARk score of the per-instance algorithm selector)
are assessed based on their marginal contribution (i.e., cost of
omission) [52]. The marginal contribution defines the contri-
bution of a given solver as the drop in performance caused
by removing that solver from a given selector [52]. Note
that the adoption of the marginal contribution can reward
solvers that exhibit poor overall performance, but a strong
performance on some nontrivial instance classes [51]. As a
result, the use of the marginal contribution can identify a col-
lection of solvers that have strong complementarity. However,
the adoption of this metric can also penalize correlated candi-
date solvers. For example, if there are two solvers that show
similar performance on the same instances, their marginal con-
tribution would be small. This issue could be addressed by
using another evaluation metric called the Shapley value [51],
which is based on a prominent concept from cooperative game
theory. However, compared to calculating the marginal con-
tribution, computing Shapley values for all solvers would be
significantly more time consuming. As a result, in order to effi-
ciently compute each solver’s contribution, we decided to use
marginal contribution as our evaluation metric in this initial
version of Sparkle.

To accurately compute the marginal contribution of a given
solver s, we have to construct a per-instance algorithm selector
that does not use s and assess its performance. Fortunately, the
performance of a perfect selector, i.e., one that always selects
for a given problem instance the solver from S that performs
best on it, can easily be estimated in the form of the marginal

contribution based on perfect selectors with and without s, and
this can be calculated very efficiently from the performance
data P. Furthermore, the performance of selectors produced
by state-of-the-art selector construction methods is known to
often be close to that of an idealized, perfect selector over the
given set of solvers [52], [53]. To assess the performance of
the actual selector R created by Sparkle, we also compute the
marginal contribution of the solvers in S to this actual selector
using the same mechanism. By comparing the performance of
the perfect selector and the actual selector we can give insight
on the optimality gap of the actual selector.

Using the marginal contribution to evaluate each given
solver, there is a clear incentive for solver developers to
focus their efforts on improving the state of the art, as rep-
resented by a high quality portfolio-based algorithm selector,
such as AutoFolio [19], *Zilla [49], or ASAP [54]. The Sparkle
platform operationalizes this incentive by constructing the per-
instance algorithm selector, tracking solver contributions, and
making detailed information on the performance and contri-
bution of their solvers available to solver developers; it also
provides a fair and well-defined way to assess solver con-
tributions. We note that, although the marginal contribution
is useful, there are other metrics one may want to consider.
Selectors can also make suboptimal choices, and although
AutoFolio (and thus Sparkle) specifically aims to mitigate
this issue by suggesting algorithm schedules (to hopefully
avoid the worst case where a single poorly chosen solver does
not solve the problem), other and better solutions could be
developed to address this general issue in AAS.

Considering our implementation in Sparkle, and the step-by-
step process outlined in Fig. 1, we observe several improve-
ments to the ease of use. In step 1, Sparkle takes care of
most work the user would otherwise have to do to collect the
performance data. Instead of writing their own scripts to run all
combinations of instances and algorithms, ensuring correct and
consistent cutoff time measurements between all algorithms
(step 1b), and formatting the performance data (step 1c), with
Sparkle, the user only has to adapt a small part of a wrapper
template (for each algorithm) to call the algorithm executable
and print the performance. Sparkle provides similar savings
in time and effort for feature data preparation (step 3). In
step 4b, Sparkle provides a minor convenience by automating
the installation of AutoFolio, but this also saves some time and
effort. Importantly, Sparkle ensures the process is performed
correctly, by always running validation on the training set in
step 6b. With AutoFolio, this is not guaranteed, since it runs
validation only when the selector is not saved to a file. In
step 7, Sparkle helps the user beyond the basic performance
indicators returned by AutoFolio, by generating a report. This
report includes (in addition to the basic performance indicators
AutoFolio also returns for the produced selector) the individual
performance per solver and a visual comparison of the selec-
tor to the single best solver (step 7a), the contribution to the
selector of each solver in the form of the marginal contribu-
tion (step 7b), and the followed experimental procedure and
references (step 7c). The automatic generation of the report
not only saves time compared to using custom-built scripts or
partially manual processes, but also helps to avoid errors.

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1357

Listing 2. Example of algorithm configuration in Sparkle for the capacitated
vehicle routing problem.

To confirm the benefits of Sparkle for AAS, a small study
was performed with two users. They were asked how much
time and code they needed for each step from Fig. 1. One
user (using AutoFolio directly and through Sparkle) reduced
the time spent by 68 % when using Sparkle compared to using
AutoFolio without Sparkle, and reported a similar reduction
(69 %) in terms of the lines of code they needed to write. For
the second user (having only tried AutoFolio9) the results were
strongly influenced by steps 1a and 2a which together took up
more than 95 % of the time, and also a large portion of the
code. This is the result of the user having to spend significant
time and coding effort to get algorithms from external sources
installed and running on a specific HPC environment (step 1a),
and also spent significant time collecting problem instances
(step 2a). Taking this into account, the time spent could have
been reduced by 1 % when using Sparkle and the code written
by 5 %. When we exclude these two steps (we note that these
two steps are equal between Sparkle and AutoFolio without
Sparkle), and look only at the remaining steps, however, the
savings were quite a bit more significant, with the user being
able to save 22 % of their time and 16 % of the coding effort.
It is also worth mentioning that this second user did not com-
pute the marginal contributions of the component algorithms
to the produced algorithm selector, something Sparkle would
have done for them. For both users, Sparkle helped to reduce
the time and effort spent for making effective use of AAS.
This suggest that Sparkle can indeed make the use of AAS
easier. Full results and an explanation of the data processing
are included in the supplemental material.

V. SPARKLE FOR PARAMETERIZED SOLVERS

The version of Sparkle considered in the previous section
exploited the fact that there are effective algorithm selection
methods that can be used to leverage complementary strengths
of nondominated solvers. In practice, many of these solvers are
(or easily can be) parameterized, such that they can be config-
ured for optimized performance on different types of instances.
For example, in the case of SAT solving, the degree to which
the performance of state-of-the-art solvers can be optimized
for specific types of instances has been demonstrated in the
CSSCs [3]. This motivates the use of automated configuration

9Numbers for Sparkle were estimated based on their numbers for
AutoFolio, the process for this is explained in the supplemental material.

procedures, such as SMAC [20], irace [23], ParamILS [27], or
GPS [28], to obtain state-of-the-art solvers for specific types
of instances. Fig. 2 describes a typical process followed in
algorithm configuration and indicates where the version of
Sparkle described in the following improves the ease of use
compared to using a configurator without aid beyond the affor-
dances commonly made by algorithm configurators. To effec-
tively exploit the configurability of solvers, we now describe
an extension of the basic version of Sparkle discussed in
Section IV.

In addition to the components introduced in the previous
section, this extended version of Sparkle also comprises the
following.

1) Configuration spaces for some (or all) of the solvers
in S, where a configuration space � consists of a list
of parameters, a domain of possible values for each
such parameter, a (possibly empty) set of conditional
parameter dependencies and a (possibly empty) set of
constraints on combinations of parameter values.

2) An AAC procedure O for optimizing the performance
of a given solver s ∈ S on a subset of I.

In a practical setting, we also need to provide.
1) A mechanism for performing runs of the automatic

configuration procedure O;
2) UI affordances to specify configuration spaces for

solvers in S; to specify which subset of instances from
I is to be used for a run of the configuration procedure
O on a specific solver s ∈ S, to launch such a run and to
validate the performance of the configurations of s thus
obtained on another subset of instances from I.

The implementation in Sparkle is illustrated in Listing 2.10

Following initialization (line 1), two instance sets from the
same distribution are added to I to accommodate the train-
ing and testing phases (lines 2 and 3). Similarly, a solver s
is added to S (line 4). Besides the solver executable,11 only
a wrapper and a pcs-file [55] (to specify the configuration
space for a parameterized solver s) to be used for configura-
tion have to be included in the solver directory to be added
to Sparkle. To start the configuration procedure O, a solver
and instance set that are available in Sparkle are specified
(line 5). We note that here, the performance metric is changed
from the default (running time), to absolute solution quality.
Alternatively, this can also be specified in the settings file, such
that the option does not have to be given with the commands.
Likewise, other settings (e.g., cutoff times, the value k for the
PARk score, etc.) can also be specified in the settings file, with
common settings also changeable via command-line options.
Configuration is then performed with multiple independent
runs of the configuration procedure, following the widely used
standard protocol for algorithm configuration (e.g., [35]). The
use of this standard protocol is important, because it exploits
the fact that algorithm configurators are typically randomized,

10Some paths are shortened for legibility reasons, e.g., initialise.py
would be Commands/initialise.py and VRP_SISRs/ would be
path/to/VRP_SISRs/. A complete runnable example is available at
https://bitbucket.org/sparkle-ai/sparkle/src/main/Examples/configuration_quali
ty.sh.

11The user is assumed to know how to install solvers in this Sparkle version.

1358 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 2. Typical algorithm configuration process, with steps where Sparkle improves the ease of use compared to using a stand-alone configurator shown in
boldface. Further, Sparkle also provides useful support for steps that are already commonly supported by AAC tools, e.g., by providing a broadly usable and
carefully constructed wrapper template for target algorithms. Solid lines connect related steps; dashed lines separate the phases: preparation, execution, and
analysis.

and that AAC is a time-consuming process that benefits from
using parallel computing resources. Based on the same proto-
col, the configuration found by each run is then validated on
the training set before selecting the best-performing one, which
is then validated on the instances in the test set (line 6). Finally,
a report12 is generated which describes the experimental setup
and compares the default and optimized configuration (line 7;
as for AAS, it also details the components I, S, and C). To uti-
lize this optimized configuration on a new instance i (or a set
of problem instances), the run_configured_solver.py
command can be used. It takes the most recently con-
figured solver s and runs it on the given instance(s)
with the optimized configuration found by the configuration
procedure O.

Currently, SMAC [20], which is a widely used
state of the art configurator that is also freely available
for academic use, is the configurator O used in Sparkle.
However, in principle this could also be any other state-of-the-
art general-purpose algorithm configuration procedure, such
as ParamILS [27], irace [23], GPS [28], or GGA++ [56].

The current performance metrics for running time (PARk)
and absolute solution quality were chosen because they are
most widely used. Beyond this, a user can define their own
metric through a combination of the absolute solution qual-
ity metric and the wrapper for the target algorithm, although
this requires some effort. The same applies to metrics that
depend on the performance of other solvers, although using
these requires knowledge about where Sparkle saves these
results.

In this version of Sparkle, the configuration procedure O
can be used to optimize solver performance for specific types
of instances characterized by subsets of instances available in
Sparkle (as part of instance set I). This makes it possible to
configure solvers for overall performance across broad sets of

12An example report is included in the supplemental material.

instances, as well as, more importantly, for specific types of
instances – the latter makes it even easier for solver developers
to achieve contributions to the state-of-the-art in solving hard
problems (e.g., SAT) by determining and then submitting con-
figurations of their solvers that boost the performance of the
portfolio-based selector constructed by Sparkle as described
in Section IV.

When comparing our implementation in Sparkle to the
step-by-step process for AAC shown in Fig. 2 (and specifi-
cally, SMAC), we observe several usability improvements. In
step 4b, Sparkle automates the creation of files with paths
to each individual training and testing instance. While users
can do this fairly easily with their own scripts, it still saves
some time. Installation of the AAC procedure is automated
by Sparkle (step 5b). In step 7, Sparkle ensures a number of
important aspects of AAC happen correctly (i.e., following
the standard protocol for AAC [35]), and also saves time by
automating these steps. Specifically, step 7b ensures multiple
configuration runs are done, step 7c provides a minor aid
by automating the creation of a configuration scenario file
for SMAC, and steps 7d–7f automate the correct handling of
validation for configuration results and selecting the final con-
figuration. Finally, in step 8, Sparkle provides major support
by providing much more detailed result analysis than SMAC
does by default. Beyond the performance of the configured
algorithm and the parameter string associated with it given by
SMAC, Sparkle additionally provides the performance of the
default configuration, plots comparing the performance of
the configured and default algorithm parameters per instance,
the number of timeouts of those two configurations, and a
description of the followed experimental procedure. The auto-
mated collection of all results saves time, and gives the user
substantially more insight. It also helps prevent mistakes.

For AAC, we also performed a small user study with four
users, who were asked to estimate how much time and code
they needed for each step in Fig. 2. One user (having tried

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1359

AAC with SMAC13) would save 35 % of their time by using
SMAC through Sparkle, while their code use would be almost
equal (only 1 % less). Interestingly, the user did not follow
many of the substeps of step 7 (see Fig. 2), which relate to
the standard protocol for AAC [35], and thus little or no time
was spent on these substeps. Had they followed the standard
protocol, time and code savings with Sparkle likely would have
been substantially larger. This also supports the need for tools
like Sparkle, that, by design, ensure the correct and efficient
use of AAC. The second user (also using AAC with SMAC13),
could have reduced time spent by 51 % and lines of code writ-
ten by 43 % by using Sparkle. For the third user (using SMAC
through Sparkle) the data they entered shows that they spent
almost no time and had to write no code at all for steps 7
and 8, suggesting that the major support Sparkle provides for
these steps is helpful. Since we cannot estimate how much time
and code they would have needed for those steps when using
SMAC without Sparkle, it is not clear how much time and
coding effort they saved by using Sparkle, but it is reasonable
to assume the savings were substantial. The fourth user (using
SMAC13 without Sparkle) could have reduced the time they
spent by 40 % with Sparkle, and the lines of code written by
29 %. The interested reader can find the instructions for users,
complete results, and analysis procedure in the supplemental
material.

VI. SPARKLE AS A COMPETITION PLATFORM

By utilizing the Sparkle platform, we can organize Sparkle
challenges, a novel type of competitive event, which aims
to advance the state of the art in solving various challeng-
ing computational problems, including Boolean satisfiability
(SAT) [46], AI planning [57], and other problems, by lever-
aging automatically constructed algorithm selectors and by
quantifying contributions of individual solvers.

As mentioned previously, it is well established that the state
of the art for solving challenging computational problems (e.g.,
SAT [58], planning [54], minimum vertex cover [59], answer
set programming [48], satisfiability modulo theories [60], etc.)
is not defined by a single solver, but rather by a collec-
tion of nondominated solvers with complementary strengths.
To exploit this performance complementarity, machine learn-
ing techniques can be leveraged to build effective automatic
algorithm selectors that utilize state-of-the-art solvers. Sparkle
challenges automatically combine all participating solvers into
a state-of-the-art algorithm selector, and assess the contribution
of each participating solver to the performance of that algo-
rithm selector, using the functionality introduced in Section IV.
Participants are incentivized to advance the state of the art as
measured by this selector, by maximizing the contribution of
their solver to the overall selector performance.

At the moment, traditional solver competitions (such as the
international SAT competitions6 [44], [45], [46], international
planning competitions14 [57], [61], [62], etc.) measure the
performance of each individual solver across a large set of

13Numbers for Sparkle were estimated based on their numbers for SMAC,
the process for this is explained in the supplemental material.

14https://ipc2018.bitbucket.io/

benchmark instances, and identify the winning solver(s) based
on their overall performance across this instance set.

Rather than the gold, silver, and bronze medals awarded in
traditional solver competitions, participants in Sparkle chal-
lenges are awarded slices of a single gold medal; the size of
each slice is proportional to the magnitude of the marginal
contribution made by the respective solver to the performance
of the automatically constructed selector built from all partic-
ipating solvers on all benchmarking instances. That is to say,
Sparkle challenges identify the best solver per instance, and
award solvers based on the number of instances for which they
contribute the best performance.

In recent years, we have already organized two Sparkle chal-
lenges with earlier unpublished versions of the Sparkle plat-
form described here. The Sparkle SAT Challenge 20181 was
an official competition affiliated with the 21st International
Conference on Theory and Applications of Satisfiability
Testing,15 while the Sparkle Planning Challenge 20192 was a
satellite competitive event affiliated with the 29th International
Conference on Automated Planning and Scheduling.16

Both events attracted significant participation and produced
a series of interesting results, thus demonstrating the viability
of using Sparkle for new competition formats. (A presentation
and discussion of the results of the Sparkle challenges are
beyond the scope of this article, but the interested reader
can find further information on the web pages referenced
earlier.)

VII. OTHER USES AND EXTENSIONS

In Sections IV and V, we have outlined the two primary use
cases supported in the current version of Sparkle, algorithm
selection, and algorithm configuration. Beyond those, a num-
ber of other use cases and extensions should be highlighted.

A. Benchmarking

Many tools in Sparkle can also be used for traditional bench-
marking tasks, in addition to their use as part of the selection or
configuration processes. In particular, the parallel processing
functionalities available in Sparkle turn the parallel execution
of a collection of algorithms or computation of the features
for a set of instances into simple tasks, especially compared
to writing scripts for each new case.

One specific benchmarking use-case enabled by Sparkle is
the comparison of multiple solvers by using the AAS func-
tionalities. This facilitates analysis for a specific experiment or
application, as opposed to competitions, which often consider
larger sets of solvers and problem instances. The report result-
ing from AAS provides, for each solver, the respective PAR
score and marginal contribution to the portfolio selector. This
gives an indication of the value of each solver. We emphasize
again that analyzing solvers based on their marginal contri-
butions better represents the state of the art than traditional
ranking schemes aimed at pinpointing a single best solver.
More details on which solver worked well on which specific

15http://sat2018.azurewebsites.net/competitions/
16https://www.icaps-conference.org/competitions/

1360 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

instances are stored in a file containing the results per problem
instance, but currently have to be compared manually.

B. Parameter Importance Analysis

Following algorithm configuration, solver developers can
gain valuable insights by analyzing the resulting configu-
ration in more detail. Parameter importance analysis gives
insights into how much individual parameters contribute to
the performance difference between two parameter configu-
rations of a solver s on a subset of the instances in I. This
gives insight into the impact of parameter changes on solver
performance. In Sparkle, we analyze the parameter importance
between the default expert-chosen parameter configuration θd

and the best-found configuration θc after automated config-
uration, both originating from the configuration space � for
solver s.

Currently, Sparkle uses ablation analysis [63] to assess
parameter importance. Ablation analysis constructs a path
from the default configuration θd to the best-found config-
uration θc by iteratively changing the parameter that yields
the largest performance gain, starting from θd. Eventually, all
parameters are changed, and thus, the target configuration is
reached. The resulting ablation path shows for each parame-
ter how much the solver performance is affected and as such
provides a local perspective of the parameter importance.

Ablation analysis in Sparkle requires a solver s, a subset
of instances of I, and a finished configuration run on the for-
mer two. The command run_ablation.py verifies these
prerequisites are met and then generates an ablation scenario.
The default configuration θd is retrieved from the pcs-file of the
solver, and the best parameter settings found by automatic con-
figuration act as the target configuration θc. A second subset
of instances of I enables the validation of the found abla-
tion path. Ablation analysis can be started immediately after
the algorithm configuration has finished when the optional flag
–ablation is added to the configure_solver.py com-
mand. The results of the ablation analysis are automatically
included in the configuration report as a table, where each
row describes a parameter modification along with the result-
ing performance score. Optionally, the table can be excluded
with the –no-ablation flag for generate_report.py.

C. Parallel Algorithm Portfolios

Similarly to AAS, parallel algorithm portfolios (PAPs) [50],
[64], [65] can help to obtain greater performance out of a given
(set of) algorithm(s). Where AAS leverages the performance
variation between different algorithms, PAPs can also utilize
the variation between multiple runs of a single, randomized
algorithm. This is done by executing a portfolio of algorithms
in parallel. When considering running time optimization, the
performance variation between different algorithms will result
in each finding solutions faster for different instances.

Here, we consider basic PAPs that do not take advantage of
additional information. As such, it is not necessary to predict
which algorithm is fastest, but all algorithms in the portfo-
lio are always included, and in theory, they can always take
advantage of the fastest running time, trading off wall-clock

time against parallelism. In practice, the parallelization creates
some overhead, and more sophisticated PAPs can run only the
solvers predicted to be fast, in order to reduce overhead.

This first version of PAPs has been implemented in Sparkle,
and broadly follows the same command flow as AAS and
AAC. A selection of algorithms can be combined into a PAP,
and for each nondeterministic algorithm, the desired number
of copies can be indicated. Once a portfolio has been cre-
ated, it can be used on a subset of instances in I, of which
the performance results are presented in a report. These PAPs
are especially useful to effectively utilize parallel resources,
increase robustness, and to still gain performance when no
good features are yet available to use AAS on a given problem.

VIII. BEST PRACTICES AND PITFALL AVOIDANCE

It is well known that pitfalls commonly arise when using
AAC techniques, and that certain practices are helpful in
avoiding these and ensuring successful applications [17]; sim-
ilar considerations apply to the effective use of AAS and other
meta-algorithmic techniques (e.g., in the context of CP [66]).
Sparkle aims to incorporate best practices to make correct and
effective use of these techniques.

We do not exhaustively discuss all pitfalls here, since some
of them do not apply (e.g., each configurator handling the algo-
rithms under configuration differently) and others are beyond
the scope of the current implementation of Sparkle (e.g.,
assuring generalisability across machines with different hard-
ware). Naturally, as Sparkle is further extended, additional best
practices will be incorporated.

Correct interaction between the solvers included by the user,
the configurator, and Sparkle itself, is supported by providing
wrapper templates to the user for both AAS and AAC.

As mentioned previously in the discussion of Sparkle for
parameterized solvers (Section V), the widely used standard
protocol for algorithm configuration [35] is integrated into
Sparkle, to facilitate its correct and efficient use. Particularly,
Sparkle performs multiple runs of the configurator, validates
the best configuration from each run on the training instances,
and selects the best performing from those.

To ensure the correct handling of the running time cut-
offs for target algorithms, Sparkle uses runsolver, a tool that
is widely used in benchmarking studies and competitions
[67], [68]. The main goal in this context is to measure running
times in a trusted and consistent way, rather than relying on
target algorithms that may each measure and report their run-
ning time differently and possibly incorrectly. For some cases,
runsolver is called in the wrapper the user provides for their
solver, and while templates for these wrappers are provided
that include this call, it still, in part, relies on the user. Like
the running time cutoffs, the actual measurements of the run-
ning time of target algorithms are also done through runsolver.
The same goes for other situations where time is measured,
such as feature extraction.

With regard to the termination of target algorithm runs,
Sparkle also relies on runsolver: To ensure termination hap-
pens at the right time, runsolver measures the time, and
terminates when the cutoff time is reached. As with time

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1361

measurement, the termination procedure also partially relies on
a wrapper that is adapted by the user for their target algorithm,
but otherwise Sparkle handles everything.

Correct use is also supported by some smaller adjustments.
When configuring nondeterministic algorithms, Sparkle uses
multiple random seeds per problem instance, to avoid over-
tuning to specific seeds. To deal with unexpected output,
some checks are included, e.g., to try to detect target algo-
rithm crashes. To deal with incorrect results returned by target
algorithms, solution checkers should be used whenever possi-
ble, and such a checker is included for SAT. Memory limits
for algorithm runs are handled through the Slurm workload
manager,17 by including them in run and batch calls to Slurm.

IX. CONCLUSION

To conclude, we summarize the main takeaways of our
work, before briefly discussing directions for future work.

A. Summary

High-performance solvers have been key to improving our
ability to solve computationally challenging problems, such
as SAT, MIP, and AI planning, including in academic and
real-world settings. Improvements to these solvers are in part
incentivized by benchmarks and competitions, where partic-
ipants drive each other to continuously advance the state of
the art. At the same time, by utilizing meta-algorithmic tech-
niques, such as AAC and AAS, performance can be improved
by making maximal use of the potential available from existing
algorithms and algorithm components.

Assessing the performance of such improvements is still
commonly done by measuring which algorithm is the best
overall. However, this is not an accurate representation of the
state of the art. The true state of the art is represented by
a collection of complementary solvers that perform well on
different subsets of problem instances (as also leveraged by
AAS). This is complemented by techniques, such as AAC and
PAPs, which get us closer to the maximal performance poten-
tial of algorithms or portfolios of algorithms, and as such also
support a more accurate picture of the state of the art. The
assessment of the true state of the art requires complex spe-
cialized techniques that are not easy to use correctly, and the
same applies to using meta-algorithmics to benefit from their
ability to maximize performance.

To this end, we introduced the Sparkle platform. With this
platform, meta-algorithmic tools are made accessible to solver
developers and users that may not have much expertise in
meta-algorithmics. The key principles behind making these
tools accessible are that they can be used effectively and cor-
rectly, even by nonexperts. To achieve this, standard protocols
are implemented to automatically ensure correct use and pitfall
avoidance where possible. Otherwise, checking mechanisms
are used to alert the user to potential problems, and support
messages are provided to guide them in resolving potential
issues. All of this drives the increased adoption and applica-
tion of meta-algorithmic techniques, which in turn improves

17https://slurm.schedmd.com

performance and results in a more accurate view of the state
of the art.

Specifically, in this work we have shown how AAS and
AAC are implemented in and accessible through Sparkle.
By implementing standard protocols, the effort and expertise
required from users to adopt meta-algorithms are decreased
compared to stand-alone AAS and AAC tools. In addition,
we have outlined the use of Sparkle as a competition plat-
form. By employing the meta-algorithms available in Sparkle
for competitions, the outcome of the competitions more accu-
rately represents the true state of the art. With AAS solvers can
be credited based on their contribution, which recognizes that
different solvers are the best for different instances, and there
is no one best solver. Finally, extensions to parameter impor-
tance analysis and the use of PAPs have been discussed to
showcase how Sparkle can further support the user in analyz-
ing results and gain performance from other meta-algorithmic
techniques.

B. Future Work

To reach the overarching goal of the Sparkle platform to
cover the full range of meta-algorithmic techniques that are of
broad interest, several extensions are desirable.

The Sparkle team aims to ensure support for an up-to-date
collection of AAS and AAC techniques, and mechanisms for
others to add such techniques. This will keep Sparkle aligned
with the advancements in AAS and AAC, and also facilitate
extensions to benchmarking and comparison of these tech-
niques. By including, new, improved, techniques in Sparkle,
users can easily adopt them, since the interface stays the same.

To further maximize the impact of solvers, integrations
of selection and configuration procedures will be provided
in Sparkle. One way is to configure a solver that opti-
mizes its contribution to a portfolio-based selector, similar to
Hydra [13], [69]. Sparkle could be extended to obtain new
configurations for a set of separate and possibly very different
solvers, rather than for a single parameterized solver, as in
Hydra. With this extension in place, interesting combinations
of AAC and AAS could be used in Sparkle challenges.

While multiobjective meta-algorithms are still scarce, some
do exist, such as the multiobjective algorithm configurator,
MO-ParamILS [70]. Sparkle should be extended to support
this for a broader audience, to also facilitate the many problem
domains with conflicting objectives.

For AAS as well as AAC, several useful extensions to
Sparkle are possible. For AAS, this includes: 1) metrics
other than PARk, starting with absolute solution quality and
2) alternatives to the marginal contribution to assess algorithm
contributions to a selector. Specific to AAC, ideas include:
1) additional performance metrics beyond PARk and absolute
solution quality, including mechanisms for users to add their
own metrics and 2) global parameter importance analysis tools
(e.g., forward selection [71] or functional ANOVA [72]).

Once the functionality currently provided by Sparkle is in
broad use, the state of the art in solving a diverse range of
computational problems should, and can easily, be assessed

1362 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

more accurately, by means of solver configurability and com-
plementarity. Improvements to the state of the art can then also
be better incentivised by new types of competitions, such as
the CSSCs [3] and Sparkle challenges.1,2 Beyond providing
the necessary tools, future versions of Sparkle should there-
fore simplify setting up such competitions, e.g., by reducing
the manual work for organizers.

In parallel to the possible extensions mentioned above,
Sparkle should also be further improved in how it sup-
ports users. For example, a testing harness could be supplied
that audits the compliance of a solver with the require-
ments of Sparkle’s configuration mechanism, and installation
of both Sparkle itself and target algorithms could be simpli-
fied with support for container technologies (e.g., Docker18

or Kubernetes19). On the practical side, the current version
of Sparkle only runs with the widely used Slurm workload
manager.17 However, everything could in principle run on a
single machine, a cluster, or in the cloud, and we aim to
accommodate all of these scenarios in the future. Finally,
by further reducing the prerequisite knowledge required to
use Sparkle, meta-algorithmic techniques should become even
more accessible to a progressively wider audience.

Once completed, these extensions bring Sparkle close to the
vision of making the full range of meta-algortihmic techniques
that are of broad interest accessible and usable for a wide audi-
ence. The resulting increase in adoption of these techniques
should help researchers and practitioners to realize the full
potential of their algorithms, and to benefit from each others’
work, thus maximally advancing the true state of the art in
solving challenging computational problems.

ACKNOWLEDGMENT

The authors would like to thank Richard Middelkoop for
work on the implementation of PAPs, and all users we have
interviewed for taking the time to provide input on the amount
of code and time they needed per step for AAS or AAC. Some
of the ideas discussed in this document have their roots in joint
work and discussions with Frank Hutter, Chris Fawcett, and
Kevin Leyton-Brown.

REFERENCES

[1] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances
in SAT-based formal verification,” Int. J. Softw. Tools Technol. Transfer,
vol. 7, no. 2, pp. 156–173, 2005.

[2] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “ISAC—
Instance-specific algorithm configuration,” in Proc. 19th Eur. Conf. Artif.
Intell. (ECAI), 2010, pp. 751–756.

[3] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and
K. Leyton-Brown, “The configurable SAT solver challenge (CSSC),”
Artif. Intell., vol. 243, pp. 1–25, Feb. 2017.

[4] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, “MaxSAT
by improved instance-specific algorithm configuration,” Artif. Intell.,
vol. 235, pp. 26–39, Jun. 2016.

[5] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Algorithm
portfolios based on cost-sensitive hierarchical clustering,” in Proc. 23rd
Int. Joint Conf. Artif. Intell. (IJCAI), 2013, pp. 608–614.

18https://www.docker.com/
19https://kubernetes.io/

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Automated configuration
of mixed integer programming solvers,” in Proc. 7th Int. Conf. Integr.
AI OR Techn. Constraint Program. Comb. Optim. Problems (CPAIOR),
2010, pp. 186–202.

[7] C. Fawcett, M. Helmert, H. Hoos, E. Karpas, G. Röger, and J. Seipp,
“FD-Autotune: Domain-specific configuration using fast downward,” in
Proc. ICAPS Workshop Planning Learn. (PAL), 2011, pp. 13–20.

[8] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA,” J. Mach. Learn. Res., vol. 18, no. 25, pp. 1–5,
2017.

[9] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min. (KDD), Chicago, IL, USA, Aug. 2013, pp. 847–855.

[10] J. R. Rice, “The algorithm selection problem,” in Advances in
Computers, vol. 15. Amsterdam, The Netherlands: Elsevier, 1976,
pp. 65–118.

[11] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
Portfolio-based algorithm selection for SAT,” J. Artif. Intell. Res., vol. 32,
pp. 565–606, Jun. 2008.

[12] C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, “Reactive dialectic
search portfolios for MaxSAT,” in Proc. 31st AAAI Conf. Artif. Intell.
(AAAI), 2017, pp. 765–772.

[13] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Hydra-MIP:
Automated algorithm configuration and selection for mixed integer
programming,” in Proc. 18th RCRA Workshop Exp. Eval. Algorithms
Solving Problems Comb. Explosion (RCRA), 2011, pp. 16–30.

[14] G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky, “DASH: Dynamic
approach for switching heuristics,” Eur. J. Oper. Res., vol. 248, no. 3,
pp. 943–953, 2016.

[15] D. Bridge, E. O’Mahony, and B. O’Sullivan, Case-Based Reasoning
for Autonomous Constraint Solving. Berlin, Germany: Springer, 2012,
pp. 73–95.

[16] M. Helmert, G. Röger, and E. Karpas, “Fast downward stone soup: A
baseline for building planner portfolios,” in Proc. ICAPS Workshop Plan.
Learn., 2011, pp. 28–35.

[17] K. Eggensperger, M. Lindauer, and F. Hutter, “Pitfalls and best practices
in algorithm configuration,” J. Artif. Intell. Res., vol. 64, pp. 861–893,
Jan. 2019.

[18] X. Bouthillier and G. Varoquaux, “Survey of machine-learning exper-
imental methods at NeurIPS2019 and ICLR2020,” INRIA Saclay,
Ile-de-France, Palaiseau, France, Rep. hal-02447823, 2020.

[19] M. T. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub, “AutoFolio: An
automatically configured algorithm selector,” J. Artif. Intell. Res., vol. 53,
pp. 745–778, Aug. 2015.

[20] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proc. 5th Int. Conf.
Learn. Intell. Optim. (LION), 2011, pp. 507–523.

[21] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“COCO: A platform for comparing continuous optimizers in a black-box
setting,” Optim. Methods Softw., vol. 36, no. 1, pp. 114–144, 2021.

[22] J. Dreo et al., “Paradiseo: From a modular framework for evolution-
ary computation to the automated design of metaheuristics: 22 years of
Paradiseo,” in Proc. GECCO Companion, 2021, pp. 1522–1530.

[23] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43–58, Jan. 2016.

[24] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir, and T. Bäck,
“Benchmarking discrete optimization heuristics with IOHprofiler,” Appl.
Soft Comput. J., vol. 88, Mar. 2020, Art. no. 106027.

[25] A. Aziz-Alaoui, C. Doerr, and J. Dreo, “Towards large scale automated
algorithm design by integrating modular benchmarking frameworks,” in
Proc. Genet. Evol. Comput. Conf. Companion, 2021, pp. 1365–1374.

[26] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuss, “Sequential param-
eter optimization,” in Proc. IEEE Congr. Evol. Comput., vol. 1, 2005,
pp. 773–780.

[27] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS:
An automatic algorithm configuration framework,” J. Artif. Intell. Res.,
vol. 36, pp. 267–306, Sep. 2009.

[28] Y. Pushak and H. H. Hoos, “Golden parameter search: Exploiting struc-
ture to quickly configure parameters in parallel,” in Proc. Genet. Evol.
Comput. Conf., New York, NY, USA, 2020, pp. 245–253.

[29] F. Hutter et al., “AClib: A benchmark library for algorithm configura-
tion,” in Proc. 8th Int. Conf. Learn. Intell. Optim., Gainesville, FL, USA,
Feb. 2014, pp. 36–40.

VAN DER BLOM et al.: SPARKLE: TOWARD ACCESSIBLE META-ALGORITHMICS 1363

[30] B. Bischl et al., “ASlib: A benchmark library for algorithm selection,”
Artif. Intell., vol. 237, pp. 41–58, Aug. 2016.

[31] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and
F. Hutter, “Auto-sklearn: Efficient and robust automated machine learn-
ing,” in Automated Machine Learning. Cham, Switzerland: Springer,
2019, pp. 113–134.

[32] N. Erickson et al., “AutoGluon-tabular: Robust and accurate AutoML
for structured data,” 2020, arXiv:2003.06505.

[33] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML:
Networked science in machine learning,” SIGKDD Explorations, vol. 15,
no. 2, pp. 49–60, Jun. 2014.

[34] C. Nell, C. Fawcett, H. H. Hoos, and K. Leyton-Brown, “HAL: A
framework for the automated design and analysis of high-performance
algorithms,” in Proc. 5th Int. Conf. Learn. Intell. Optim. (LION 5), 2011,
pp. 600–615.

[35] J. Styles, H. H. Hoos, and M. Müller, “Automatically configuring algo-
rithms for scaling performance,” in Proc. 6th Int. Conf. Learn. Intell.
Optim. (LION 6), Paris, France, Jan. 2012, pp. 205–219.

[36] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evol. Comput., vol. 27,
no. 1, pp. 3–45, 2019.

[37] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” AI Mag., vol. 35, no. 3, pp. 48–60, 2014.

[38] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “Exploratory landscape
analysis of continuous space optimization problems using information
content,” IEEE Trans. Evol. Comput., vol. 19, no. 1, pp. 74–87,
Feb. 2015.

[39] D. Le Berre and L. Simon, “The essentials of the SAT 2003 competi-
tion,” in Theory and Applications of Satisfiability Testing, E. Giunchiglia
and A. Tacchella, Eds. Berlin, Germany: Springer, 2004, pp. 452–467.

[40] D. Le Berre and L. Simon, “Fifty-five solvers in Vancouver: The SAT
2004 competition,” in Theory and Applications of Satisfiability Testing,
H. H. Hoos and D. G. Mitchell, Eds. Berlin, Germany: Springer, 2005,
pp. 321–344.

[41] O. Kullmann, “The SAT 2005 solver competition on random instances,”
J. Satisfiability Boolean Model. Comput., vol. 2, nos. 1–4, pp. 61–102,
2006.

[42] D. Le Berre and L. Simon, “Preface to the special volume on the SAT
2005 competitions and evaluations,” J. Satisfiability Boolean Model.
Comput., vol. 2, nos. 1–4, pp. 1–14, 2006.

[43] A. Balint, A. Belov, M. Järvisalo, and C. Sinz, “Overview and analysis
of the SAT challenge 2012 solver competition,” Artif. Intell., vol. 223,
pp. 120–155, Jun. 2015.

[44] T. Balyo, A. Biere, M. Iser, and C. Sinz, “SAT race 2015,” Artif. Intell.,
vol. 241, pp. 45–65, Dec. 2016.

[45] T. Balyo, M. J. H. Heule, and M. Järvisalo, “SAT competition 2016:
Recent developments,” in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 5061–5063.

[46] M. J. H. Heule, M. Järvisalo, and M. Suda, “SAT competition 2018,”
J. Satisfiability Boolean Model. Comput., vol. 11, no. 1, pp. 133–154,
2019.

[47] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and
M. Sellmann, “Algorithm selection and scheduling,” in Proc. 17th Int.
Conf. Princ. Pract. Constraint Program. (CP), 2011, pp. 454–469.

[48] H. Hoos, M. T. Lindauer, and T. Schaub, “Claspfolio 2: Advances in
algorithm selection for answer set programming,” Theory Pract. Logic
Program., vol. 14, nos. 4–5, pp. 569–585, 2014.

[49] C. Cameron, H. H. Hoos, K. Leyton-Brown, and F. Hutter, “OASC-
2017: *Zilla submission,” in Proc. Open Algorithm Selection Challenge,
vol. 79. Brussels, Belgium, Nov./Dec. 2017, pp. 15–18.

[50] M. Lindauer, H. H. Hoos, K. Leyton-Brown, and T. Schaub, “Automatic
construction of parallel portfolios via algorithm configuration,” Artif.
Intell., vol. 244, pp. 272–290, Mar. 2017.

[51] A. Fréchette, L. Kotthoff, T. P. Michalak, T. Rahwan, H. H. Hoos,
and K. Leyton-Brown, “Using the Shapley value to analyze algo-
rithm portfolios,” in Proc. 30th AAAI Conf. Artif. Intell. (AAAI), 2016,
pp. 3397–3403.

[52] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “Evaluating component
solver contributions to portfolio-based algorithm selectors,” in Proc. 15th
Int. Conf. Theory Appl. Satisfiability Test. (SAT), Trento, Italy, Jun. 2012,
pp. 228–241.

[53] L. Kotthoff, “On algorithm selection, with an application to combinato-
rial search problems,” Ph.D. dissertation, Univ. St Andrews, St Andrews,
U.K., 2012.

[54] M. Vallati, L. Chrpa, and D. E. Kitchin, “ASAP: An automatic algorithm
selection approach for planning,” Int. J. Artif. Intell. Tools, vol. 23, no. 6,
2014, Art. no. 1460032.

[55] F. Hutter and S. Ramage. “Manual for SMAC version v2.10.03-
master.” 2015. [Online]. Available: http://www.cs.ubc.ca/labs/beta/
Projects/SMAC/v2.10.03/manual.pdf

[56] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney,
“Model-based genetic algorithms for algorithm configuration,” in Proc.
24th Int. Joint Conf. Artif. Intell. (IJCAI), 2015, pp. 733–739.

[57] A. F. Bocchese, C. Fawcett, M. Vallati, A. E. Gerevini, and H. H. Hoos,
“Performance robustness of AI planners in the 2014 international
planning competition,” AI Commun., vol. 31, no. 6, pp. 445–463, 2018.

[58] C. Luo, H. Hoos, and S. Cai, “PbO-CCSAT: Boosting local search for
satisfiability using programming by optimisation,” in Parallel Problem
Solving From Nature (PPSN XVI). Cham, Switzerland: Springer, 2020,
pp. 373–389.

[59] C. Luo, H. H. Hoos, S. Cai, Q. Lin, H. Zhang, and D. Zhang, “Local
search with efficient automatic configuration for minimum vertex cover,”
in Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI), Macao, China,
Aug. 2019, pp. 1297–1304.

[60] J. Scott, A. Niemetz, M. Preiner, S. Nejati, and V. Ganesh, “MachSMT:
A machine learning-based algorithm selector for SMT solvers,” in
Tools Algorithms Construction Analysis of Systems. Cham, Switzerland:
Springer, 2021, pp. 303–325.

[61] M. Vallati, L. Chrpa, and T. L. McCluskey, “What you always wanted to
know about the deterministic part of the international planning competi-
tion (IPC) 2014 (but were too afraid to ask),” Knowl. Eng. Rev., vol. 33,
p. e3, Apr. 2018.

[62] D. Pellier and H. Fiorino, “From classical to hierarchical: Benchmarks
for the HTN track of the international planning competition,” 2021,
arXiv:2103.05481.

[63] C. Fawcett and H. H. Hoos, “Analysing differences between algo-
rithm configurations through ablation,” J. Heuristics, vol. 22, no. 4,
pp. 431–458, 2016.

[64] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artif. Intell.,
vol. 126, nos. 1–2, pp. 43–62, 2001.

[65] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach
to hard computational problems,” Science, vol. 275, no. 5296, pp. 51–54,
1997.

[66] R. Amadini, M. Gabbrielli, and J. Mauro, “Why CP portfolio solvers
are (under)Utilized? issues and challenges,” in Proc. LOPSTR, 2015,
pp. 349–364.

[67] V. M. Manquinho and O. Roussel, “The first evaluation of pseudo-
Boolean solvers (PB),” J. Satisfiability Boolean Model. Comput., vol. 2,
nos. 1–4, pp. 103–143, 2006.

[68] O. Roussel, “Controlling a solver execution with the runsolver tool,” J.
Satisfiability Boolean Model. Comput., vol. 7, no. 4, pp. 139–144, 2011.

[69] L. Xu, H. H. Hoos, and K. Leyton-Brown, “Hydra: Automatically con-
figuring algorithms for portfolio-based selection,” in Proc. 24th AAAI
Conf. Artif. Intell. (AAAI), 2010, pp. 210–216.

[70] A. Blot, H. H. Hoos, L. Jourdan, M. Kessaci-Marmion, and
H. Trautmann, “MO-ParamILS: A multi-objective automatic algorithm
configuration framework,” in Proc. 10th Int. Conf. Learn. Intell. Optim.
(LION 10), 2016, pp. 32–47.

[71] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Identifying key algorithm
parameters and instance features using forward selection,” in Proc. 7th
Int. Conf. Learn. Intell. Optim., Catania, Italy, Jan. 2013, pp. 364–381.

[72] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in Proc. 31st Int. Conf. Mach.
Learn. (ICML), vol. 32. Beijing, China, Jun. 2014, pp. 754–762.

Koen van der Blom received the Ph.D. degree
in multiobjective evolutionary optimization for
early-stage building design from Leiden University,
Leiden, The Netherlands, in 2019.

He is a Postdoctoral Researcher with LIP6,
Sorbonne Université, Paris, France. His research
interests include the accessibility of meta-
algorithms, such as automated algorithm selection
and configuration, evolutionary computation
for real-world applications, and multiobjective
optimization.

Dr. van der Blom’s thesis received an honorable mention for the 2020
ACM SIGEVO Best Dissertation Award.

1364 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Holger H. Hoos received the Ph.D. (Dr.rer.nat.)
degree in computer science from the Technical
University Darmstadt, Darmstadt, Germany, in
1998.

He holds an Alexander von Humboldt
Professorship of AI with RWTH Aachen University,
Aachen, Germany, as well as a Professorship of
Machine Learning with Universiteit Leiden, Leiden,
The Netherlands, and an Adjunct Professorship of
Computer Science with The University of British
Columbia, Vancouver, BC, Canada.

Dr. Hoos is the past President of the Canadian Association for
Artificial Intelligence and one of the initiators of CLAIRE, an ini-
tiative by the European AI community that seeks to strengthen
European excellence in AI research and innovation. He is known
for his work on machine learning and optimization methods for
the automated design of high-performance algorithms and on stochas-
tic local search, he has developed—and vigorously pursues—the paradigm
of programming by optimization; he is also one of the originators of
the concept of automated machine learning. He has a penchant for work
at the boundaries between computing science and other disciplines, and
much of his work is inspired by real-world applications. He is a Fellow
of the Association of Computing Machinery, the Association for the
Advancement of Artificial Intelligence, and the European AI Association
(EurAI).

Chuan Luo received the Ph.D. degree in computer
science from Peking University, Beijing, China, in
2016.

He is currently an Associate Professor with the
School of Software, Beihang University, Beijing. His
current research interests include heuristic search,
combinatorial optimization, software testing, and
cloud computing.

Jeroen G. Rook is currently pursuing the Ph.D.
degree in multiobjective meta-algorithmics with the
Data Management and Biometrics Group, University
of Twente, Enschede, The Netherlands.

His research focuses on creating multiobjective
methods for automated algorithm configuration and
selection to make them more statistically robust, ver-
satile, and powerful. More broadly, he is interested
in multiobjective optimization and algorithm bench-
marking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

