
Sparkle: TowardsAutomatedAlgorithm
ConfigurationforEveryone
Koen van der Blom1, Chuan Luo2, and Holger H. Hoos1,3

1Leiden University, 2Microsoft Research Asia, 3University of British Columbia

Selection

Selector

Solver

Instance

Training
instances

Feature
extractor

Result

Configuration

Configurator

Solver

Parameter
space

Training
instances

Scenario

Parameter
settings

Sparkle

Sparkle

Instances

Solvers

Report

• Make meta-algorithmics more accessible

• Operate with simple commands

• Integrated best practices and avoidance of pitfalls

Simple commands
1: Commands/initialise.py
2: Commands/add_instances.py -run-solver-later

-run-extractor-later ../PTN/
3: Commands/add_solver.py -run-solver-later -deterministic 0

../PbO-CSCCSAT-Generic/
4: Commands/add_feature_extractor.py -run-extractor-later

../SAT-features-competition2012/
5: Commands/compute_features.py
6: Commands/configure_solver.py -solver

Solvers/PbO-CSCCSAT-Generic -instance_set Instances/PTN/
7: Commands/generate_report_for_configuration.py

Cooperative competition

 0

 500

 1000

 1500

 2000

 2500

 3000

dual-bfws

SYSU-Planner

Kronk
PROBE

MRW-RPG

PASAR
Madagascar

IPALAMA

Cerberus

Aquaplanning

 0

 20

 40

 60

 80

 100

PA
R1

0
[C

PU
 s

ec
]

re
la

tiv
e

m
ar

gi
na

l c
on

tr
ib

ut
io

n
[%

]

• Marginal contribution [Xu et al 2012]:
How valuable is this solver to the selector

Reporting

The System Report for Sparkle

Automatically generated by Sparkle (version: Sparkle_SAT_Challenge_2018)

1st April 2019

1 Introduction

Sparkle [2] is a multi-agent problem-solving platform based on Programming by Optimisation (PbO)
[1], and would provide a number of e�ective algorithm optimisation techniques (such as automated
algorithm con�guration, portfolio-based algorithm selection, etc) to accelerate the existing solvers.

This experimental report is automatically generated by Sparkle. This report presents the system
status for Sparkle.

2 Experimental Preliminaries

In this section, we present the experimental preliminaries, including the list of solvers, the list of feature
extractors, the list of instance classes, the information about experimental setup and the information
about how to construct a portfolio-based algorithm selector in Sparkle.

2.1 Solvers

There are 3 solver(s) submitted in Sparkle, and the list of solver(s) is given as follows.

1. CSCCSat_wrapper_sparkle

2. Lingeling_wrapper_sparkle

3. MiniSAT_wrapper_sparkle

2.2 Feature Extractors

There are 1 feature extractor(s) submitted in Sparkle, and the list of feature extractor(s) is given as
follow.

1. SAT-features-competition2012_revised_without_SatELite_sparkle

2.3 Instance Classes

There are 10 instance(s) submitted in Sparkle. All instance(s) are classi�ed into 1 instance class(es),
and the list of instance class(es) is given as follows.

1. Sparkle_test_instances, number of instances: 10

1

2.4 Experimental Setup

Feature computation: We use all the feature extractors which are presented above to compute
the feature vector for each instance. Each feature extractor will compute a feature vector for each
instance. The �nal feature vector is the combination of all computed feature vectors. The cuto� time
for feature vector computation on each instance is set to 90 seconds. The memory limit for feature
vector computation on each instance is set to 32768 MB.

Performance computation: Each solver will run one time on each instance. The cuto� time
for each performance computation run is set to 10 seconds. The memory limit for each performance
computation run is set to 8192 MB.

2.5 Constructing Portfolio-Based Algorithm Selector

Sparkle runs all the feature extractors to compute the feature vector for each instance, and store the
resulting feature data (feature vectors for all instances) in the system. Also, Sparkle runs all the solvers
to solve each instance, and store the resulting performance data in the system. After the feature-related
and the performance-related experiments are �nished, by utilising the feature data and the performance
data, Sparkle uses AutoFolio [3] to automatically construct a portfolio-based algorithm selector in the
system.

2.6 Marginal Contribution

Since the primary goal of Sparkle is to analyse the contribution of each solver to the real state of the
art, Sparkle utilises the concept of marginal contribution [4] to measure each solver's contribution to
the perfect portfolio selector, also known as Virtual Best Solver (VBS), and the actual portfolio
selector.

Now we give the protocol for calculating each solver's marginal contribution. Assume that we have
a set of solvers S and a portfolio selector P constructed based on a subset of S. In this report, the
performance of a solver or portfolio selector is measured via the the penalised average runtime (PAR2),
which conforms with the measurement used in SAT Competitions. Let par2 (P) denote the PAR2 value
achieved by leveraging the complementary strengths of the algorithms in P .

The absolute marginal contribution (Abs_Margi_Contr) for solver s is calculated as

amc(s) =





log10
par2(P\{s})

par2(P) par2 (P\{s}) > par2 (P)

0 else

(1)

Then, for each solver s, we calculate the relative marginal contribution (Rel_Margi_Contr), which
is propositional to the absolute marginal contribution, with normalisation. The relative marginal
contribution for solver s is calculated as

rmc(s) =
amc(s)∑

s′∈S amc(s′)
(2)

Finally, the contribution of each solver is evaluated by the relative marginal contribution.

3 Experimental Results

In this section, the related experimental results in Sparkle are presented and analysed.

2

• PbO-CCSAT-Generic (configured), PAR10: 8.500000

• PbO-CCSAT-Generic (default), PAR10: 287.646364

The empirical comparison between the PbO-CCSAT-Generic (configured) and PbO-CCSAT-Generic
(default) on the training set of PTN is presented in Figure 2.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

P
b
O

-C
C

S
A

T
-G

e
n
e
ri
c
 (

c
o
n
fi
g
u
re

d
),

 P
A

R
1
0

PbO-CCSAT-Generic (default), PAR10

PbO-CCSAT-Generic (configured) vs PbO-CCSAT-Generic (default)

Figure 2: Empirical comparison between the PbO-CCSAT-Generic (configured) and PbO-CCSAT-
Generic (default) on the training set of PTN.

References
[1] Holger H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80, 2012.

[2] Holger H. Hoos. Sparkle: A pbo-based multi-agent problem-solving platform. Technical report,
Department of Computer Science, University of British Columbia, 2015.

[3] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization (LION 5), pages 507–523, 2011.

3

• Contribution per solver

• Cite selector

• Cite configurator

• Process description Future

• Further simplifications, such as inferring the parameter
space

• Shapley value [Shapley 1953]?

• Your ideas?

References
[1] Shapley, L. S. (1953). A value for n-person games. In Contributions to the

Theory of Games, volume II, pages 307âĂŞ317. Princeton University Press.

[2] Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2012). Evaluating
component solver contributions to portfolio-based algorithm selectors. In Pro-
ceedings of the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2012), LNCS 7317, pages 228âĂŞ241.

