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BACKGROUND
Building spatial design involves multiple dis-
ciplines with conflicting objectives. Tradi-
tional design procedures require cooperation
between experts from different disciplines to
ensure a design that is effective for each disci-
pline. Cooperation between experts is prone
to overlooking discipline specific intricacies.
Pareto optimisation is a tool to help find a
balance between different disciplines in de-
sign problems. This work presents an ef-
fort to optimise building spatial designs with
objective functions from two conflicting dis-
ciplines: energy performance and structural
performance.

SUPERCUBE REPRESENTATION
Building spatial designs are represented by a
supercube as shown in Fig. 1.
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Figure 1: Left: Supercube grid represetation. Right:
Building spatial design.

Discrete variables: (all binary)

b`i,j,k, i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd},

k ∈ {1, . . . , Nh}, and ` ∈ {1, . . . , Nspaces}

Continuous variables:

wi, i ∈ {1, . . . , Nw}, dj , j ∈ {1, . . . , Nd},

and hk, k ∈ {1, . . . , Nh}

Energy performance is measured as the total
outside surface area of the building spatial de-
sign, excluding the floor surface of the ground
level.
A black box simulator is used to compute the
structural performance measured by the com-
pliance.

CONSTRAINTS
These constraints are defined in MINLP form:

• Spaces should not overlap with each
other

• Spaces should have a cuboid (3D rectan-
gle) shape

• Vertical gaps (e.g. floating parts, arch-
ways, cantilevered parts) are not allowed

• The number of spaces is constant

For example the last constraint is described by
Eq. 1. Equations of the other cosntraitns may
be found in [1].

∀i,j,k
Nspaces∑

`=1

b`i,j,k ≤ 1 (1)

STANDARD ALGORITHMS
NSGA-II [3] and SMS-EMOA [4] are used in
their standard form except for the following:

• Function evaluation: Only when no con-
straints are violated. In case of constraint
violations a large penalty value based on
the number of violations is returned.

• Offspring generation: After traditional
offspring generation the volume of
the offspring individual is repaired by
rescaling supercube dimensions.

A constant volume is maintained during op-
timisation of the building spatial design to
avoid the possibility of objectives largely be-
ing optimised by taking extreme values for the
continuous variables.
The volume of a building spatial design is
found with Eq. 2 and must be close to the de-
sired volume V0. When the current volume Vc
is not within 1% of V0 the building spatial de-
sign is scaled by a factor α = V0/Vc as in Eq.
3.

Nw∑
i=1

Nd∑
j=1

Nh∑
k=1

bi,j,kwidjhk = V0 (2)

∀i : wi = 3
√
αwi

∀j : dj = 3
√
αdj

∀k : hk = 3
√
αhk

(3)

SMART SMS-EMOA
Smart SMS-EMOA aims to improve naviga-
tion through the constrained search space by
adapting SMS-EMOA as follows:

• Initialisation: Spaces are initialised to
the lowest empty cell in a randomly se-
lected pillar.

• Mutation: Expand or contract a single
random surface of a random space by a
single cell width. In case of constraint vi-
olation try a random different move.

• No recombination

The volume of offspring individuals is re-
paired in the same manner as presented for the
standard algorithms. Penalties are no longer
necessary since the used operators ensure no
constraints are violated.
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Figure 2: Left: Assigning a single cell to each space
in a randomly selected pillar to initialse. Right: Mu-
tation with possible mutation directions for space B

EXPERIMENTAL RESULT

Experiments were conducted to compare the
performance of standard versions of the
NSGA-II and SMS-EMOA algorithms as well
as the smart SMS-EMOA algorithm presented

here. The comparison was made on problems
of different size, varying in number of cells
represented by the supercube and number of
spaces to encode.
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Figure 3: Results over five runs. Left: Median attainment curves. Right: Average hypervolume growth.

CONCLUSION
• First approximate Pareto Fronts of build-

ing spatial designs are produced, which
are always convex

• An improved understanding of the de-
sign space is achieved

• Standard algorithms have difficulty nav-
igating constrained landscapes

• A problem specific constraint handling
mutation operator is introduced

• Smart mutation improves convergence
to and precision of the Pareto front
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