Accessible meta-algorithms with Sparkle

Koen van der Blom^{1,2}, Holger Hoos^{3,2,4}, Chuan Luo⁵, Jeroen Rook⁶

¹Sorbonne Université, ²Leiden University, ³RWTH Aachen University, ⁴University of British Columbia, ⁵Beihang University, ⁶University of Twente

Meta-algorithms

- Algorithm configuration
- Algorithm selection
- Parallel algorithm portfolios

• Get the best performance out of algorithms

Adoption of meta-algorithms

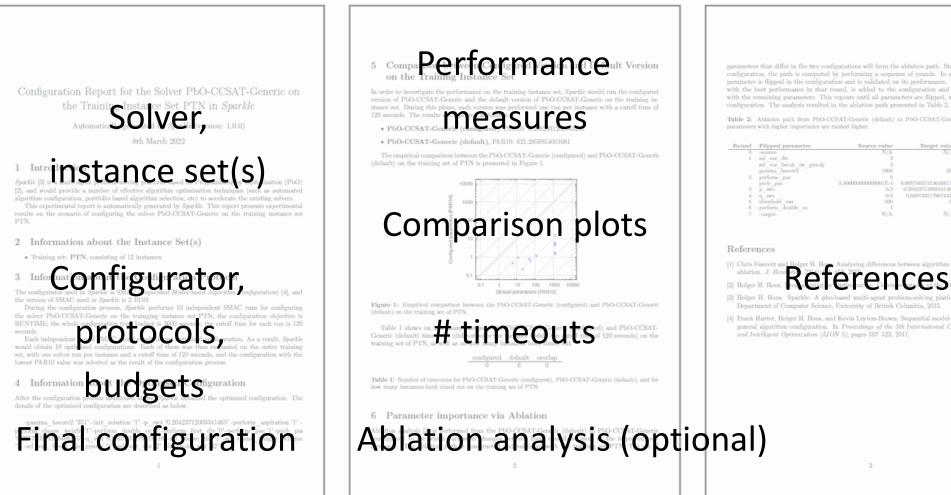
- Adoption is limited, even in ML research [Bouthillier & Varoquaux, 2020]
- Meta-algorithms are complex and difficult for non-experts
- Substantial pitfalls, e.g., in AAC [Eggensperger et al., 2019]
- Errors are costly, e.g., re-running AAC is computationally expensive

Expanding the reach of meta-algorithms

• COSEAL community

- ...
- Laypeople from any other field

• Sparkle platform \rightarrow Reach wider audiences, one step at a time


Goals of Sparkle

- Simplify the use of meta-algorithms
- Increase the adoption of meta-algorithms
- Prevent common pitfalls and often-made errors
- Ensure proper experimentation pipelines
- Improve our ability to assess, access and improve the SOTA in computational problem solving

Command line and scripting interface

- 1: Commands/initialise.py
- 2: Commands/add_instances.py path/to/PTN/
- 3: Commands/add solver.py --deterministic 0 path/to/PbO-CSCCSAT/
- 4: Commands/add solver.py --deterministic 0 path/to/MiniSAT/
- 5: Commands/add feature extractor.py path/to/Extractor/
- 6: Commands/compute_features.py
- 7: Commands/run_solvers.py
- 8: Commands/construct_sparkle_portfolio_selector.py
- 9: Commands/generate_report.py

Reports

parameters that differ in the two configurations will form the ablation path. Starting from the default configuration, the path is computed by performing a sequence of rounds. In a round, each available with the best performance in that round, is added to the configuration and the next round starts with the remaining parameters. This repeats until all parameters are flipped, which is the best found

Table 2: Ablation path from PbO-CCSAT-Generic (default) to PbO-CCSAT-Generic (configured) where

Round	Flipped parameter	Source value	Target value	Validation result
	-source-	N/A	N/A	610.48433
1	sel var div	3	2	
	sel_var_break_tie_greedy	2	4	
	gamma hscore2	1000	351	116.32313
2	perform pac	0	1	
	prob pac	5.8000000000001E-4	0.005730374136488115	18,91441
3	p swt	0.3	0.20423712003341465	122,56680
4	q swt	0.0	0.6807207179674418	17,40350
5	threshold swt	300	32	103.07659
6	perform_double_cc	1	0	3.85328
7	-target-	N/A	N/A	3.85717

[4] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5), pages 507-523, 2011.

Going forward

- Slurm clusters only \rightarrow Local execution in progress
- SMAC only → Extending to other configurators
- Simplify, improve, extend ... in many directions

Sparkle makes meta-algorithms accessible for improving the state of the art in solving challenging problems in AI.

Try Sparkle yourself!

bitbucket.org/sparkle-ai/sparkle

Opening for research engineer @ RWTH Aachen