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Summary

• Algorithm selection (AS) is great, e.g., for SAT →Mostly per-instance

• Black-box optimisation → No a priori instance-specific information

• Per-class AS → Use problem properties for AS over sets of instances
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Summary

• General data-driven AS framework
→ Outperform hand-made SOTA system by Meta (NGOpt)

• Extensions to grey-box problems possible, to use more information
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This talk

• Why we care about per-class algorithm selection

• How data-driven per-class algorithm selection works

• Comparison to hand-designed system

• Discussion of generality and extensibility

4Per-class algorithm selection for black-box optimisation



Koen van der Blom and Carola Doerr

Algorithm selection [Rice, Adv. in Comp. 1976]
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Per-instance algorithm selection
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Black-box optimisation

• Optimise a problem with unknown internals

• Use sampling strategy to find the optimum
• Evolutionary algorithms
• Bayesian optimisation
• …

• No a priori instance specific → Costs function evaluations to compute
• Description
• Features
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Per-class algorithm selection
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Properties vs. features

• Features
• Describe a problem instance

• Differ across instances

• Require function evaluations to determine

• Properties
• Describe the higher level problem class or domain

• Same across instances (in the same class/domain)

• Known a priori
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Pros and cons to per-class algorithm selection

• No per-instance selection, but for larger groups

• Pro
• Free – Can make a decision before doing any evaluations

• General – Don’t have to design features for each problem variant

• Con
• Being less specific will usually mean lower performance
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Data-driven selector – Basic idea
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Considered problem properties

• Dimensions – Number of decision variables

• Budget – Number of function evaluations

• Properties we keep fixed
• Variable type – Continuous

• No constraints

• No noise

12Per-class algorithm selection for black-box optimisation



Koen van der Blom and Carola Doerr

Comparison

• NGOpt39
• Hand-designed competence map / selection wizard – “what is good where”

[Meunier et al., TEVC 2022]

• Data-driven selector
• Choose from the algorithms included in NGOpt39 based on performance data

• Same algorithms + implementation, different selection method
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Training

• Budgets: [1,…,10000]

• Dimensions: [1,…,100]

• Algorithms: All those used by NGOpt39 in this domain (34 total)

• Problems: 24 BBOB functions, instance 1, 25 repetitions each
[Hansen et al. Tech. Rep. 2009]
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Ranking

• Per budget-dimension pair
• Give an algorithm 1 point for each run in the top 25 per problem

• Runs below the top 25 tied with the 25th best run are also awarded a point

• Algorithm with most points is chosen for the budget-dimension pair
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Data-driven vs. NGOpt39
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Testing

• Budgets: [200, 300, 500, 1000, …, 5000, 6000, …, 10000]

• Dimensions: [2, 3, 5, 10, …, 50, 60, …, 100]

• Algorithms:
• 5 per budget-dimension pair

• All those chosen by NGOpt39, or in the top 4 performers (excluding NGOpt39)

• Problems: 828 MA-BBOB functions, 1 repetition each
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MA-BBOB – Many affine combinations
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Test ranking

• One run per algorithm per problem

• Per budget-dimension pair
• Give an algorithm 1 point for each problem where it is the best

• Algorithms tied with the best algorithm on a problem also get a point

• Algorithm with most points is chosen for the budget-dimension pair
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Data-driven vs. NGOpt39 on MA-BBOB
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Wins compared to the VBS on MA-BBOB
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Loss to the VBS on MA-BBOB (% of problems)
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Moving forward

• Improve training instance set for generalisability

• Progressively add algorithms

• Evaluate different selection methods, e.g., for:
• Worst case performance
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Discrete

Generalisation to other problem domains
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• Include user provided properties in the data-driven analysis

• Property needs to be known for the training data

• E.g., multimodal
(F15-F24 in BBOB)

Extension to grey-box setting
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Take home

• Per-class algorithm selection for black-box optimisation works

• Data-driven system improves over hand-designed selectors

• General conceptual framework → No features, no problem
• Problems with constraints, multiple objectives, … → No problem!

• Extendable to grey-box setting
• Have a multimodal problem?
→ Selection based on multimodal problems in the data

26Per-class algorithm selection for black-box optimisation



Koen van der Blom and Carola Doerr

References

• [Dietrich and Mersmann 2022] Dietrich, K., Mersmann, O. (2022). Increasing the Diversity of Benchmark 
Function Sets Through Affine Recombination. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., 
Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in 
Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_41

• [Hansen et al. 2009] Real-parameter black-box optimization benchmark-ing 2009: Noiseless functions 
definitions. Technical Report RR-6829, Inria, France (2009).

• [Meunier et al. 2022] L. Meunier et al., "Black-Box Optimization Revisited: Improving Algorithm Selection 
Wizards Through Massive Benchmarking," in IEEE Transactions on Evolutionary Computation, vol. 26, no. 3, 
pp. 490-500, June 2022, doi: 10.1109/TEVC.2021.3108185.

• [Rice 1976] Rice, John R. "The algorithm selection problem." Advances in computers. Vol. 15. Elsevier, 1976. 
65-118.

• [Vermetten et al. 2023] Diederick Vermetten, Furong Ye, and Carola Doerr. 2023. Using Affine Combinations 
of BBOB Problems for Performance Assessment. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO '23). Association for Computing Machinery, New York, NY, USA, 873–881. 
https://doi.org/10.1145/3583131.3590412

27Per-class algorithm selection for black-box optimisation


