
Discover the world at Leiden University Natural Computing Group 1Natural Computing GroupDiscover the world at Leiden University 1

Practical Assignment

Differential Evolution

Based in part on the book “Differential Evolution: A Practical Approach 
to Global Optimization” by Price, Storn and Lampinen (2006)



Discover the world at Leiden University Natural Computing Group 2

Differential Evolution

• Based on Darwinian evolution

• Improved version of Genetic Annealing (Price 1994)

• Storn and Price developed differential evolution in the 
following years

• Population based numerical optimization

• Exclusively floating-point encoding



Discover the world at Leiden University Natural Computing Group 3

Genetic Annealing

• Combination of the Genetic Algorithm and Simulated 
Annealing

• Limitations:

- Slow convergence on more difficult problems

(e.g. Chebyshev polynomial fitting)

- Difficult to tune

Genetic Annealing Differential Evolution

Encoding Bit-string Floating-point

Operations Logical Arithmetic

Solver type Combinatorial Numerical



Discover the world at Leiden University Natural Computing Group 4

Differentiability

• Traditionally:

- Differentiable: Gradient based optimization

- Non-differentiable: Stochastic optimization

Source: Price, Storn, Lampinen (2006), Fig 1.5 (left) and Fig 1.7 (right)



Discover the world at Leiden University Natural Computing Group 5

Non-Differentiable Examples

Source: http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html

http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html


Discover the world at Leiden University Natural Computing Group 6

Differential Evolution Algorithm

1. Generate initial population of size 𝑁𝑝 ≥ 4

2. Generate 𝑁𝑝 mutant vectors

3. Crossover parent population with mutant vectors

4. Select the best individual from each pair of parent and 
offspring individuals

5. If (not terminate) go to 2



Discover the world at Leiden University Natural Computing Group 7

Initialization

• Select parameter values for:

- 𝑁𝑝 ≥ 4: Population size

- 𝐹 ∈ [0,1]: Scaling factor, usually not greater than 1.0

- 𝐶𝑟 ∈ [0,1]: Crossover rate

𝑥𝑗,𝑖,0 = 𝑟𝑎𝑛𝑑𝑗 0,1 ⋅ 𝑏𝑗,𝑈 − 𝑏𝑗,𝐿 + 𝑏𝑗,𝐿

𝑟𝑎𝑛𝑑(0,1) is uniform in [0,1]

𝑖 is the individual index

𝑗 is the variable index

𝑏𝐿is the lower bound

𝑏𝑈 is the upper bound

𝑔 is the generation (here 0)

Source: Price, Storn, Lampinen (2006), Eq. 2.4



Discover the world at Leiden University Natural Computing Group 8

Mutation

• 𝐹 ∈ [0,1]: Scaling factor, usually not greater than 1.0

Source: Price, Storn, Lampinen (2006), Fig. 2.1, Eq. 2.5

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)

𝑣𝑖 mutant vector to compare with parent 𝑥𝑖

𝑥𝑟0, 𝑥𝑟1, 𝑥𝑟2 randomly selected vectors

distinct from each other and 𝑥𝑖



Discover the world at Leiden University Natural Computing Group 9

Mutation example

Ind Vec

𝑥1 (4,8)

𝑥2 (6,5)

𝑥3 (9,2)

𝑥4 (1,7)

Mut 𝒙𝒓𝟎 𝒙𝒓𝟏 𝒙𝒓𝟐 (𝒙𝒓𝟏 − 𝒙𝒓𝟐) × 𝑭 +𝑥𝑟0

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−4,2.5) (2,7.5)

𝑣2 𝑥3 𝑥4 𝑥1 (−3,−1) (−1.5, −0,5) (7.5,1.5)

𝑣3 𝑥1 𝑥2 𝑥4 (5, −2) (2.5, −1) (6.5,7)

𝑣4 𝑥3 𝑥2 𝑥1 (2, −3) (1, −1.5) (10,0.5)

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 𝐹 = 0.5

How is the step size controlled?

 By the difference between variable values!



Discover the world at Leiden University Natural Computing Group 10

Mutation example

Ind Vec

𝑥1 (4,8)

𝑥2 (6,5)

𝑥3 (9,2)

𝑥4 (1,7)

Mut 𝒙𝒓𝟎 𝒙𝒓𝟏 𝒙𝒓𝟐 (𝒙𝒓𝟏 − 𝒙𝒓𝟐) × 𝑭 +𝒙𝒓𝟎

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−4,2.5) (2,7.5)

𝑣2 𝑥3 𝑥4 𝑥1 (−3,−1) (−1.5, −0,5) (7.5,1.5)

𝑣3 𝑥1 𝑥2 𝑥4 (5, −2) (2.5, −1) (6.5,7)

𝑣4 𝑥3 𝑥2 𝑥1 (2, −3) (1, −1.5) (10,0.5)

𝑣 𝑥2 𝑥4 𝑥4 (0,0) (0,0) (6,5)

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−8, 5) (−2,10)

𝑣1 𝑥4 𝑥2 𝑥3 (−3,3) (−3,3) (−2,10)

𝑥𝑟1 = 𝑥𝑟2

𝐹 = 1.0?

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 𝐹 = 0.5



Discover the world at Leiden University Natural Computing Group 11

Crossover

Source: Price, Storn, Lampinen (2006), Fig. 2.2, Eq. 2.6

𝑢𝑖 trial vector to compare with parent 𝑥𝑖

For every 𝑗:

Take variable 𝑗 from the mutant 𝑣 with

a probability, or from parent 𝑥 otherwise

Take at least 𝑗 = 𝑗𝑟𝑎𝑛𝑑 from the mutant

to ensure 𝑢𝑖 does not duplicate 𝑥𝑖

𝑢𝑖,𝑔 = 𝑢𝑗,𝑖,𝑔 = ൝
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑟 ∈ [0,1]: Crossover rate



Discover the world at Leiden University Natural Computing Group 12

Crossover example

𝑢𝑖,𝑔 = 𝑢𝑗,𝑖,𝑔 = ൝
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ind 𝒋 = 𝟎 𝒋 = 𝟏

𝑥1 4 8

𝑣1 2 7.5

𝑢1 2 8

𝐶𝑟 = 1?→ 𝑢1 = 𝑣1

𝑗𝑟𝑎𝑛𝑑 = 0



Discover the world at Leiden University Natural Computing Group 13

Selection

Source: Price, Storn, Lampinen (2006), Eq. 2.7

For every individual 𝑖:

Take trial vector 𝑢𝑖 if it improves the

objective value compared to parent 𝑥𝑖
Otherwise keep parent 𝑥𝑖

𝑥𝑖,𝑔+1 = ൝
𝑢𝑖,𝑔 𝑖𝑓 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Discover the world at Leiden University Natural Computing Group 14

Selection example

• Objective (sphere function):
Ind 𝒋 = 𝟎 𝒋 = 𝟏 𝒇

𝑥1 4 8 80

𝑢1 2 8 68

𝑥1
𝑛𝑒𝑤 2 8 68

Source: Price, Storn, Lampinen (2006), Fig. A.1

𝑓(𝑥) = 

𝑗=0

𝐷−1

𝑥𝑗
2 → 𝑚𝑖𝑛



Discover the world at Leiden University Natural Computing Group 15

Combined

Source: Price, Storn, Lampinen (2006), Eq. 2.8

𝑥𝑖,𝑔+1 = ൝
𝑢𝑖,𝑔 𝑖𝑓 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑗,𝑖,𝑔 = ൝
𝑥𝑗,𝑟0,𝑔 + 𝐹 ⋅ 𝑥𝑗,𝑟1,𝑔 − 𝑥𝑗,𝑟2,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑗 = 0,1,… , 𝐷 − 1; 𝑗𝑟𝑎𝑛𝑑 ∈ 0,1,… , 𝐷 − 1
𝑖 = 0,1,… ,𝑁𝑝 − 1
𝑔 = 0,1,… , 𝑔𝑚𝑎𝑥

𝑟0, 𝑟1, 𝑟2 ∈ 0,1,… ,𝑁𝑝 − 1 , 𝑟0 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑖



Discover the world at Leiden University Natural Computing Group 16

Settings

• 𝐹 > 1.0?

- Empirically shown to be more time consuming and less reliable

• 𝐹 = 1.0?

- Number of mutations halved since swapping 𝑟0 and 𝑟1 would result in 
the same outcome from mutation

• 𝑟1 = 𝑟2?

- No mutation since their difference will be zero

• 𝐶𝑟 = 1.0?

- No crossover since the parent is never selected (and thus no 
preservation of good variables)



Discover the world at Leiden University Natural Computing Group 17

Discrete parameters

• Map to and from real values

𝑄 𝑦 =
𝑓𝑙𝑜𝑜𝑟(𝑘 ⋅ 𝑦)

𝑘

Source: Price, Storn, Lampinen (2006), Fig. 4.2, Eq. 4.1



Discover the world at Leiden University Natural Computing Group 18

Algorithm outline

1. Create an initial population 𝑥𝑖=0, … , 𝑥𝑁𝑝−1 of 𝑁𝑝 random real-valued vectors;

2. Decode each vector into a solution (if applicable);

3. Evaluate fitness of each solution;

4. Repeat

5. For each vector 𝑥𝑗 ∈ 𝑥1, … , 𝑥𝑛 do

13. End

14. End

Source: Brabazon, O’Neill, McGarraghy (2015), Alg. 6.1

6. Select three other vectors randomly from the population;

7. Apply difference vector to base vector to create variant vector;

8. Combine vector 𝑥𝑖 with variant vector to produce new trial vector;

9. Evaluate fitness of the new trial vector;

10. If trial vector has higher fitness than 𝑥𝑖 then

11. Replace 𝑥𝑖 with the trial vector;

12. End



Discover the world at Leiden University Natural Computing Group 19

DE Advantages and Disadvantages

• Advantages

- Few parameters to tune

- Search automatically scales from global to local

• Disadvantages

- Dependence on initial points

- Local optima? No automatic scaling back from local to global

- Requires decoding functions for discrete values



Discover the world at Leiden University Natural Computing Group 20

Differential Evolution and Evolution Strategies

Differential Evolution Evolution Strategy

Mutation Vector differences Stochastic

Recombination Mutant with parent Parent with parent

Selection Individual parent and 

offspring comparison

Population based

Step size adaptation Implicit through

vector differences

Based on normal 

distribution



Discover the world at Leiden University Natural Computing Group 21

Recommended Reading

• Storn’s website

- http://www1.icsi.berkeley.edu/~storn/code.html

- Algorithm history

- Code in various languages

- Parameter recommendations

- More literature

http://www1.icsi.berkeley.edu/~storn/code.html


Discover the world at Leiden University Natural Computing Group 22

Literature

 Price, Kenneth V. "Genetic annealing." DR DOBBS JOURNAL 19.11 
(1994): 127.

 Storn, R., and K. Price. "DE-a Simple and Efficient Adaptive Scheme for 
Global Optimization Over Continuous Space." International Computer 
Science Institute, Technical report TR-95-012 (1995): 1-12.

 Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and 
efficient heuristic for global optimization over continuous spaces." 
Journal of global optimization 11.4 (1997): 341-359.

 Price, Kenneth, Rainer M. Storn, and Jouni A. Lampinen. Differential 
evolution: a practical approach to global optimization. Springer Science 
& Business Media, 2006.

 Brabazon, Anthony, Michael O’Neill, and Seán McGarraghy. Natural 
Computing Algorithms. Springer-Verslag Berlin Heidelberg, 2015.



Discover the world at Leiden University Natural Computing Group 23Natural Computing GroupDiscover the world at Leiden University 23

Questions?


