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Practical Assignment

Differential Evolution

Based in part on the book “Differential Evolution: A Practical Approach 
to Global Optimization” by Price, Storn and Lampinen (2006)
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Differential Evolution

• Based on Darwinian evolution

• Improved version of Genetic Annealing (Price 1994)

• Storn and Price developed differential evolution in the 
following years

• Population based numerical optimization

• Exclusively floating-point encoding
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Genetic Annealing

• Combination of the Genetic Algorithm and Simulated 
Annealing

• Limitations:

- Slow convergence on more difficult problems

(e.g. Chebyshev polynomial fitting)

- Difficult to tune

Genetic Annealing Differential Evolution

Encoding Bit-string Floating-point

Operations Logical Arithmetic

Solver type Combinatorial Numerical
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Differentiability

• Traditionally:

- Differentiable: Gradient based optimization

- Non-differentiable: Stochastic optimization

Source: Price, Storn, Lampinen (2006), Fig 1.5 (left) and Fig 1.7 (right)
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Non-Differentiable Examples

Source: http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html

http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html
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Differential Evolution Algorithm

1. Generate initial population of size 𝑁𝑝 ≥ 4

2. Generate 𝑁𝑝 mutant vectors

3. Crossover parent population with mutant vectors

4. Select the best individual from each pair of parent and 
offspring individuals

5. If (not terminate) go to 2
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Initialization

• Select parameter values for:

- 𝑁𝑝 ≥ 4: Population size

- 𝐹 ∈ [0,1]: Scaling factor, usually not greater than 1.0

- 𝐶𝑟 ∈ [0,1]: Crossover rate

𝑥𝑗,𝑖,0 = 𝑟𝑎𝑛𝑑𝑗 0,1 ⋅ 𝑏𝑗,𝑈 − 𝑏𝑗,𝐿 + 𝑏𝑗,𝐿

𝑟𝑎𝑛𝑑(0,1) is uniform in [0,1]

𝑖 is the individual index

𝑗 is the variable index

𝑏𝐿is the lower bound

𝑏𝑈 is the upper bound

𝑔 is the generation (here 0)

Source: Price, Storn, Lampinen (2006), Eq. 2.4
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Mutation

• 𝐹 ∈ [0,1]: Scaling factor, usually not greater than 1.0

Source: Price, Storn, Lampinen (2006), Fig. 2.1, Eq. 2.5

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)

𝑣𝑖 mutant vector to compare with parent 𝑥𝑖

𝑥𝑟0, 𝑥𝑟1, 𝑥𝑟2 randomly selected vectors

distinct from each other and 𝑥𝑖
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Mutation example

Ind Vec

𝑥1 (4,8)

𝑥2 (6,5)

𝑥3 (9,2)

𝑥4 (1,7)

Mut 𝒙𝒓𝟎 𝒙𝒓𝟏 𝒙𝒓𝟐 (𝒙𝒓𝟏 − 𝒙𝒓𝟐) × 𝑭 +𝑥𝑟0

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−4,2.5) (2,7.5)

𝑣2 𝑥3 𝑥4 𝑥1 (−3,−1) (−1.5, −0,5) (7.5,1.5)

𝑣3 𝑥1 𝑥2 𝑥4 (5, −2) (2.5, −1) (6.5,7)

𝑣4 𝑥3 𝑥2 𝑥1 (2, −3) (1, −1.5) (10,0.5)

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 𝐹 = 0.5

How is the step size controlled?

 By the difference between variable values!
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Mutation example

Ind Vec

𝑥1 (4,8)

𝑥2 (6,5)

𝑥3 (9,2)

𝑥4 (1,7)

Mut 𝒙𝒓𝟎 𝒙𝒓𝟏 𝒙𝒓𝟐 (𝒙𝒓𝟏 − 𝒙𝒓𝟐) × 𝑭 +𝒙𝒓𝟎

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−4,2.5) (2,7.5)

𝑣2 𝑥3 𝑥4 𝑥1 (−3,−1) (−1.5, −0,5) (7.5,1.5)

𝑣3 𝑥1 𝑥2 𝑥4 (5, −2) (2.5, −1) (6.5,7)

𝑣4 𝑥3 𝑥2 𝑥1 (2, −3) (1, −1.5) (10,0.5)

𝑣 𝑥2 𝑥4 𝑥4 (0,0) (0,0) (6,5)

𝑣1 𝑥2 𝑥4 𝑥3 (−8,5) (−8, 5) (−2,10)

𝑣1 𝑥4 𝑥2 𝑥3 (−3,3) (−3,3) (−2,10)

𝑥𝑟1 = 𝑥𝑟2

𝐹 = 1.0?

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹 ⋅ (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 𝐹 = 0.5
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Crossover

Source: Price, Storn, Lampinen (2006), Fig. 2.2, Eq. 2.6

𝑢𝑖 trial vector to compare with parent 𝑥𝑖

For every 𝑗:

Take variable 𝑗 from the mutant 𝑣 with

a probability, or from parent 𝑥 otherwise

Take at least 𝑗 = 𝑗𝑟𝑎𝑛𝑑 from the mutant

to ensure 𝑢𝑖 does not duplicate 𝑥𝑖

𝑢𝑖,𝑔 = 𝑢𝑗,𝑖,𝑔 = ൝
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑟 ∈ [0,1]: Crossover rate
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Crossover example

𝑢𝑖,𝑔 = 𝑢𝑗,𝑖,𝑔 = ൝
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ind 𝒋 = 𝟎 𝒋 = 𝟏

𝑥1 4 8

𝑣1 2 7.5

𝑢1 2 8

𝐶𝑟 = 1?→ 𝑢1 = 𝑣1

𝑗𝑟𝑎𝑛𝑑 = 0
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Selection

Source: Price, Storn, Lampinen (2006), Eq. 2.7

For every individual 𝑖:

Take trial vector 𝑢𝑖 if it improves the

objective value compared to parent 𝑥𝑖
Otherwise keep parent 𝑥𝑖

𝑥𝑖,𝑔+1 = ൝
𝑢𝑖,𝑔 𝑖𝑓 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Selection example

• Objective (sphere function):
Ind 𝒋 = 𝟎 𝒋 = 𝟏 𝒇

𝑥1 4 8 80

𝑢1 2 8 68

𝑥1
𝑛𝑒𝑤 2 8 68

Source: Price, Storn, Lampinen (2006), Fig. A.1

𝑓(𝑥) = 

𝑗=0

𝐷−1

𝑥𝑗
2 → 𝑚𝑖𝑛
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Combined

Source: Price, Storn, Lampinen (2006), Eq. 2.8

𝑥𝑖,𝑔+1 = ൝
𝑢𝑖,𝑔 𝑖𝑓 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑗,𝑖,𝑔 = ൝
𝑥𝑗,𝑟0,𝑔 + 𝐹 ⋅ 𝑥𝑗,𝑟1,𝑔 − 𝑥𝑗,𝑟2,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑗 = 0,1,… , 𝐷 − 1; 𝑗𝑟𝑎𝑛𝑑 ∈ 0,1,… , 𝐷 − 1
𝑖 = 0,1,… ,𝑁𝑝 − 1
𝑔 = 0,1,… , 𝑔𝑚𝑎𝑥

𝑟0, 𝑟1, 𝑟2 ∈ 0,1,… ,𝑁𝑝 − 1 , 𝑟0 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑖
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Settings

• 𝐹 > 1.0?

- Empirically shown to be more time consuming and less reliable

• 𝐹 = 1.0?

- Number of mutations halved since swapping 𝑟0 and 𝑟1 would result in 
the same outcome from mutation

• 𝑟1 = 𝑟2?

- No mutation since their difference will be zero

• 𝐶𝑟 = 1.0?

- No crossover since the parent is never selected (and thus no 
preservation of good variables)
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Discrete parameters

• Map to and from real values

𝑄 𝑦 =
𝑓𝑙𝑜𝑜𝑟(𝑘 ⋅ 𝑦)

𝑘

Source: Price, Storn, Lampinen (2006), Fig. 4.2, Eq. 4.1
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Algorithm outline

1. Create an initial population 𝑥𝑖=0, … , 𝑥𝑁𝑝−1 of 𝑁𝑝 random real-valued vectors;

2. Decode each vector into a solution (if applicable);

3. Evaluate fitness of each solution;

4. Repeat

5. For each vector 𝑥𝑗 ∈ 𝑥1, … , 𝑥𝑛 do

13. End

14. End

Source: Brabazon, O’Neill, McGarraghy (2015), Alg. 6.1

6. Select three other vectors randomly from the population;

7. Apply difference vector to base vector to create variant vector;

8. Combine vector 𝑥𝑖 with variant vector to produce new trial vector;

9. Evaluate fitness of the new trial vector;

10. If trial vector has higher fitness than 𝑥𝑖 then

11. Replace 𝑥𝑖 with the trial vector;

12. End
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DE Advantages and Disadvantages

• Advantages

- Few parameters to tune

- Search automatically scales from global to local

• Disadvantages

- Dependence on initial points

- Local optima? No automatic scaling back from local to global

- Requires decoding functions for discrete values
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Differential Evolution and Evolution Strategies

Differential Evolution Evolution Strategy

Mutation Vector differences Stochastic

Recombination Mutant with parent Parent with parent

Selection Individual parent and 

offspring comparison

Population based

Step size adaptation Implicit through

vector differences

Based on normal 

distribution
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Recommended Reading

• Storn’s website

- http://www1.icsi.berkeley.edu/~storn/code.html

- Algorithm history

- Code in various languages

- Parameter recommendations

- More literature

http://www1.icsi.berkeley.edu/~storn/code.html
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Questions?


