Differential Evolution

Based in part on the book "Differential Evolution: A Practical Approach to Global Optimization" by Price, Storn and Lampinen (2006)

Discover the world at Leiden University

Natural Computing Group

1

Differential Evolution

2

- Based on Darwinian evolution
- Improved version of Genetic Annealing (Price 1994)
- Storn and Price developed differential evolution in the following years
- Population based numerical optimization
- Exclusively floating-point encoding

Genetic Annealing

- Combination of the Genetic Algorithm and Simulated Annealing
- Limitations:
 - Slow convergence on more difficult problems
 - (e.g. Chebyshev polynomial fitting)
 - Difficult to tune

	Genetic Annealing	Differential Evolution
Encoding	Bit-string	Floating-point
Operations	Logical	Arithmetic
Solver type	Combinatorial	Numerical

Differentiability

Δ

- Traditionally:
 - Differentiable: Gradient based optimization
 - Non-differentiable: Stochastic optimization

Source: Price, Storn, Lampinen (2006), Fig 1.5 (left) and Fig 1.7 (right)

Discover the world at Leiden University

Non-Differentiable Examples

5

Source: http://www-math.mit.edu/~djk/calculus_beginners/chapter09/section02.html

Discover the world at Leiden University

Differential Evolution Algorithm

- 1. Generate initial population of size $Np \ge 4$
- 2. Generate Np mutant vectors
- 3. Crossover parent population with mutant vectors
- 4. Select the best individual from each pair of parent and offspring individuals
- 5. If (not terminate) go to 2

Initialization

- Select parameter values for:
 - $Np \ge 4$: Population size
 - $F \in [0,1]$: Scaling factor, usually not greater than 1.0
 - $Cr \in [0,1]$: Crossover rate

$$x_{j,i,0} = rand_j(0,1) \cdot (b_{j,U} - b_{j,L}) + b_{j,L}$$

rand(0,1) is uniform in [0,1]
i is the individual index
j is the variable index

 b_L is the lower bound b_U is the upper bound g is the generation (here 0)

Source: Price, Storn, Lampinen (2006), Eq. 2.4

Discover the world at Leiden University

Mutation

 x_1

8

• $F \in [0,1]$: Scaling factor, usually not greater than 1.0

$$v_{i,g} = x_{r0,g} + F \cdot (x_{r1,g} - x_{r2,g})$$

 v_i mutant vector to compare with parent x_i

 x_{r0}, x_{r1}, x_{r2} randomly selected vectors distinct from each other and x_i

Source: Price, Storn, Lampinen (2006), Fig. 2.1, Eq. 2.5

Discover the world at Leiden University

Mutation example

$$v_{i,g} = x_{r0,g} + F \cdot (x_{r1,g} - x_{r2,g})$$
 $F = 0.5$

Ind	Vec	Mut	x_{r0}	x_{r1}	x_{r2}	$(x_{r1} - x_{r2})$	imes F	$+x_{r0}$
<i>x</i> ₁	(4,8)	v_1	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₃	(-8,5)	(-4,2.5)	(2,7.5)
<i>x</i> ₂	(6,5)	v_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₁	(-3, -1)	(-1.5, -0,5)	(7.5,1.5)
<i>x</i> ₃	(9,2)	v_3	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₄	(5, -2)	(2.5, -1)	(6.5,7)
<i>x</i> ₄	(1,7)	v_4	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	(2, -3)	(1, -1.5)	(10,0.5)

How is the step size controlled?

 \rightarrow By the difference between variable values!

Mutation example

10

$$v_{i,g} = x_{r0,g} + F \cdot (x_{r1,g} - x_{r2,g})$$
 $F = 0.5$

Ind	Vec	Mut	x_{r0}	x_{r1}	x_{r2}	$(x_{r1}-x_{r2})$	imes F	$+x_{r0}$
<i>x</i> ₁	(4,8)	v_1	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₃	(-8,5)	(-4,2.5)	(2,7.5)
<i>x</i> ₂	(6,5)	v_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₁	(-3, -1)	(-1.5, -0,5)	(7.5,1.5)
<i>x</i> ₃	(9,2)	v_3	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₄	(5, -2)	(2.5, -1)	(6.5,7)
<i>x</i> ₄	(1,7)	v_4	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	(2, -3)	(1, -1.5)	(10,0.5)

x_{r1}	$= x_{r2}$
F =	: 1.0?

v	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₄	(0,0)	(0,0)	(6,5)
v_1	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₃	(-8,5)	(-8,5)	(-2,10)
v_1	<i>x</i> ₄	<i>x</i> ₂	<i>x</i> ₃	(-3,3)	(-3,3)	(-2,10)

Discover the world at Leiden University

Crossover

 $Cr \in [0,1]$: Crossover rate

 u_i trial vector to compare with parent x_i

For every *j*:

Take variable j from the mutant v with a probability, or from parent x otherwise

Take at least $j = j_{rand}$ from the mutant to ensure u_i does not duplicate x_i

$$u_{i,g} = u_{j,i,g} = \begin{cases} v_{j,i,g} \ if(rand_j(0,1) \le Cr \ or \ j = j_{rand}) \\ x_{j,i,g} \ otherwise \end{cases}$$

Source: Price, Storn, Lampinen (2006), Fig. 2.2, Eq. 2.6

Discover the world at Leiden University

Crossover example

$u_{i,g} = u_{j,i,g} = \begin{cases} v_{j,i,g} \ if(rand_j(0,1) \le Cr \ or \ j = j_{rand}) \\ x_{j,i,g} \ otherwise \end{cases}$

	Ind	<i>j</i> = 0	<i>j</i> = 1
	<i>x</i> ₁	4	8
	v_1	2	7.5
$j_{rand} = 0$	u_1	2	8

 $Cr = 1? \rightarrow u_1 = v_1$

Discover the world at Leiden University

Selection

$$x_{i,g+1} = \begin{cases} u_{i,g} \ if(f(u_{i,g}) \le f(x_{i,g})) \\ x_{i,g} \ otherwise \end{cases}$$

For every individual *i*:

Take trial vector u_i if it improves the objective value compared to parent x_i Otherwise keep parent x_i

Source: Price, Storn, Lampinen (2006), Eq. 2.7

Discover the world at Leiden University

Selection example

• Objective (sphere function):

Source: Price, Storn, Lampinen (2006), Fig. A.1

Discover the world at Leiden University

Combined

$$u_{j,i,g} = \begin{cases} x_{j,r0,g} + F \cdot (x_{j,r1,g} - x_{j,r2,g}) & if (rand_j(0,1) \le Cr \text{ or } j = j_{rand}) \\ x_{j,i,g} & otherwise \end{cases}$$

$$j = 0,1, \dots, D - 1; j_{rand} \in \{0,1,\dots,D-1\}$$

$$i = 0,1,\dots,Np - 1$$

$$g = 0,1,\dots,g_{max}$$

$$r0,r1,r2 \in \{0,1,\dots,Np-1\}, r0 \ne r1 \ne r2 \ne i$$

$$x_{i,g+1} = \begin{cases} u_{i,g} \ if(f(u_{i,g}) \le f(x_{i,g})) \\ x_{i,g} \ otherwise \end{cases}$$

Source: Price, Storn, Lampinen (2006), Eq. 2.8

Discover the world at Leiden University

Settings

- F > 1.0?
 - Empirically shown to be more time consuming and less reliable
- F = 1.0?
 - Number of mutations halved since swapping r0 and r1 would result in the same outcome from mutation
- r1 = r2?
 - No mutation since their difference will be zero
- Cr = 1.0?
 - No crossover since the parent is never selected (and thus no preservation of good variables)

Discrete parameters

17

Map to and from real values

Source: Price, Storn, Lampinen (2006), Fig. 4.2, Eq. 4.1

Discover the world at Leiden University

Algorithm outline

- 1. Create an initial population $\{x_{i=0}, ..., x_{Np-1}\}$ of Np random real-valued vectors;
- 2. Decode each vector into a solution (if applicable);
- 3. Evaluate fitness of each solution;
- 4. Repeat
 - 5. For each vector $x^j \in \{x^1, \dots, x^n\}$ do
 - 6. Select three other vectors randomly from the population;
 - 7. Apply difference vector to base vector to create variant vector;
 - 8. Combine vector x_i with variant vector to produce new trial vector;
 - 9. Evaluate fitness of the new trial vector;
 - 10. If trial vector has higher fitness than x_i then
 - 11. Replace x_i with the trial vector;
 - 12. **End**
 - 13. **End**
- 14. **End**

Source: Brabazon, O'Neill, McGarraghy (2015), Alg. 6.1

Discover the world at Leiden University

DE Advantages and Disadvantages

- Advantages
 - Few parameters to tune
 - Search automatically scales from global to local
- Disadvantages
 - Dependence on initial points
 - Local optima? No automatic scaling back from local to global
 - Requires decoding functions for discrete values

Differential Evolution and Evolution Strategies

	Differential Evolution	Evolution Strategy
Mutation	Vector differences	Stochastic
Recombination	Mutant with parent	Parent with parent
Selection	Individual parent and offspring comparison	Population based
Step size adaptation	Implicit through vector differences	Based on normal distribution

Discover the world at Leiden University

Recommended Reading

21

- Storn's website
 - http://www1.icsi.berkeley.edu/~storn/code.html
 - Algorithm history
 - Code in various languages
 - Parameter recommendations
 - More literature

Literature

- Price, Kenneth V. "Genetic annealing." DR DOBBS JOURNAL 19.11 (1994): 127.
- Storn, R., and K. Price. "DE-a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Space." International Computer Science Institute, Technical report TR-95-012 (1995): 1-12.
- Storn, Rainer, and Kenneth Price. "Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces." Journal of global optimization 11.4 (1997): 341-359.
- Price, Kenneth, Rainer M. Storn, and Jouni A. Lampinen. Differential evolution: a practical approach to global optimization. Springer Science & Business Media, 2006.
- Brabazon, Anthony, Michael O'Neill, and Seán McGarraghy. Natural Computing Algorithms. Springer-Verslag Berlin Heidelberg, 2015.

Questions?

Discover the world at Leiden University

